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Abstract

A Hadamard matrix is a ±1 matrix such that any two distinct rows are mutually

orthogonal. A bent sequence is a row vector x, attached to a Hadamard matrix of

square order, say H, such that the inner product of every row of H and x is constant

in absolute value.

Recently, an application of bent sequences related to Hadamard matrices was

motivated by a security application relating to Physically Unclonable Functions (Solé,

et al., 2021). In the paper, the authors work with rows of Hadamard matrices, referred

to as Hadamard codes. The authors conjecture that to maximize entropy when adding

an additional codeword, the codeword should minimize total deviation. Codewords

coming from bent sequences minimize total deviation.

Bush-type, as well as Regular Hadamard matrices, are known to be useful in pro-

viding bent sequences. In this thesis, we will generalize the notion of bent sequences

to complex Hadamard matrices. We will proceed to show several constructions giving

rise to an abundant set of bent sequences using Latin squares. Finally, we will gener-

alize bent sequences to weighing matrices, by allowing zero entries and generalizing

constructions to include zero entries.
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Chapter 1

Introduction

The evolution of modern computers has been an instrumental force driving various

areas of mathematics research. Computing has revolutionized the way we process,

store, and transmit data. However, at the center of this digital revolution lie elaborate

algorithms and cryptographic techniques aimed at safeguarding sensitive information

and ensuring secure communication channels. Among these cryptographic constructs,

developments in boolean algebra led to the discovery of bent functions, which are

indispensable tools, intricately woven into the fabric of modern encryption protocols.

However, as is often the case in research, the utility of many abstract concepts is only

realized after many years of research and development.

1.1 Motivation

In [24], an application of bent sequences, objects synonymous to bent functions, was

motivated by a security application relating to Physically Unclonable Functions. This

discovery widened research interest, fueling many discoveries and further generaliza-

tions of bent sequences. Even during the short duration of the writing of this thesis,

there have been various developments and generalizations relating to bent sequences.

This thesis aims to discuss, examine and provide further insights into recent develop-

ments.
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1.2 Thesis Outline

As our exploration of bent sequences is linked to a number of combinatorial objects,

our discussion will begin with necessary preliminaries. These preliminaries will be

discussed in Chapters 2-4.

Following the introduction, Chapter 2 will introduce Hadamard matrices, acting

as the groundwork for future generalizations. In this chapter, we will discuss prop-

erties, and showcase several useful constructions and existence results relating to

Hadamard matrices. Finally, we end the chapter by exploring different classifications

of Hadamard matrices

In Chapter 3, we generalize Hadamard matrices. In the first generalization, we

extend the entries of Hadamard matrices to include zero, sparking our discussion of

weighing matrices. Section 3.1, dedicated to weighing matrices, will include several

useful constructions as well as present some existence results. In Section 3.2, we allow

the entries of weighing matrices to take form as complex roots of unity, providing the

definitions for complex weighing matrices.

Chapter 4 shifts our focus away from generalizations of Hadamard matrices, to that

of Latin squares. In this chapter, we introduce and explore general constructions

and existence results for orthogonal Latin squares. The chapter ends with a brief

introduction to suitable Latin squares and connects these objects to orthogonal Latin

squares.

In Chapter 5 we shift our focus to that of bent functions. The chapter will begin

with an overview of Boolean functions, providing the necessary groundwork to fuel

our discussion of bent functions. Lastly, we will introduce and explore the recently

discovered applications of bent sequences.

Many of the results contained in Chapters 2-5 are found in Stinson’s book of Com-

binatorial Designs [25]. However, changes to some proofs are presented throughout

these four chapters. Notably, Corollaries 3.19, 3.20, Propositions 3.29, 5.30, 5.31,
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Theorems 4.14, 4.16, 4.20 and Lemma 3.12 all show known results which have been

proven using modified techniques not found in the referenced literature.

Chapter 6 contains many of the constructions discovered throughout the duration

of the writing of this thesis. The general construction using Latin squares and aux-

iliary matrices is based on our paper [23] in collaboration with Shi, Lu, Kharaghani,

and Solé. The chapter begins by introducing the last necessary preliminary objects,

namely unbiased Hadamard matrices. We will demonstrate several constructions of

complex bent sequences using unbiased Hadamard matrices and Latin squares. Lastly,

we generalize bent sequences to include zero, enabling us to further generalize previ-

ous results. New results in this chapter include Theorems 6.7, 6.13, 6.16 and Lemma

6.9, not included in [23].

1.3 Notation

When writing matrices, we denote −1 as − and −i as j. For example, we denote the

matrix ⎛⎜⎝1 −1

i −i

⎞⎟⎠
as ⎛⎜⎝1 −

i j

⎞⎟⎠ .

Finally, a note on indexing matrices. If we letM be any n×mmatrix, unless explic-

itly stated the rows and columns are naturally indexed by 1, 2, . . . , n and 1, 2, . . . ,m,

respectively.
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Chapter 2

Hadamard Matrices

Hadamard matrices possess remarkable properties that have found applications in

various fields, ranging from mathematics and computer science to telecommunications

and quantum computing. Due to their elegant structure and diverse applications,

these matrices have enthralled researchers for over a century.

In modern telecommunications, Hadamard matrices have found many applications

in digital signal processing, stemming from their error-correcting capabilities [28]. The

error-correcting capabilities of Hadamard matrices ensure reliable data transmission

over noisy telecommunication channels. Furthermore, Hadamard matrices play a vital

role in designing spreading sequences which allow multiple users to share the same

frequency bands without interference [12].

In quantum computing, Hadamard Matrices are fundamental components in quan-

tum circuits [16]. Specifically, Hadamard matrices are used to form Hadamard gates,

which are used to perform quantum operations.

Closely tied to the work behind this thesis, Hadamard matrices find applications

in combinatorial mathematics. In particular, Hadamard matrices are related to many

combinatorial objects including balanced incomplete block designs, orthogonal arrays,

difference sets and association schemes [25].

Mathematicians have also presented generalized forms of Hadamard matrices and

applied these generalized properties to various combinatorial objects. Throughout
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the thesis, we will encounter many generalizations of Hadamard matrices, explore

some important properties, and eventually relate these generalizations to the subject

of focus, bent sequences.

2.1 Properties

We now state the formal definition of a Hadamard matrix.

Definition 2.1. A Hadamard matrix of order n is a square matrix H with entries in

{−1, 1} such that

HHT = nIn

where In denotes the identity matrix of order n.

By way of explanation, given a Hadamard matrix of order n, say H, the condition

HHT = nIn is equivalent to stating that the row vectors of H are pairwise orthogonal.

Below we give some examples of Hadamard matrices.

Example 2.2. The following are Hadamard matrices of order 1, 2 and 4.

H1 =

(︃
1

)︃
, H2 =

⎛⎜⎝1 1

1 −

⎞⎟⎠ , H4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 − 1 −

1 1 − −

1 − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The condition that HHT = nIn is also equivalent to stating that the column

vectors of H are also pairwise orthogonal. This statement is proven in the following

proposition.

Proposition 2.3. If H is a Hadamard matrix of order n, then HT is a Hadamard

matrix of order n.

Proof. Since H is Hadamard, we have HHT = nIn. Then multiplying on the left by

H−1 we see HT = nH−1. Therefore, using the fact that (HT )T = H, it follows that

HT (HT )T = HTH = nH−1H = nIn.
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A natural question to ask when learning about Hadamard matrices is for which n

does there exist a Hadamard matrix of order n? To answer this question, we must

build the necessary framework to prove an important necessary existence condition

for Hadamard matrices.

2.1.1 Equivalenence of Hadamard Matrices

Looking at the examples of Hadamard matrices, one notices that by multiplying any

row or column of a Hadamard matrix by −1, or permuting the order of rows and

columns, the matrix remains a Hadamard matrix. In general, since the rows and

columns of a Hadamard matrix H are pairwise orthogonal, it is not hard to see that

negating a row or column of H, the resulting matrix retains the pairwise row and

pairwise column orthogonality. Similarly, we can also permute the rows and columns

of a Hadamard matrix, with the resulting matrix retaining the orthogonality of both

rows and columns. We summarize these observations in the following proposition.

Proposition 2.4. If H is a Hadamard matrix of order n and P and Q are n × n

signed permutation matrices, then PHQ is a Hadamard matrix of order n.

Proof. As P and Q are signed permutation matrices, we have PP T = In and QQT =

In. It follows that

(PHQ)(PHQ)T = PHQQTHTP T = PHHTP T = nPP T = nIn.

The observation that negating any row or column of a Hadamard matrix H gives us

another Hadamard matrix naturally gives rise to the following definition of Hadamard

equivalence.
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Definition 2.5. Let H and K be two Hadamard matrices of order n. The matrices

H and K are said to be equivalent if there exist two n×n signed permutation matrices

P and Q such that H = PKQ.

Put differently, two Hadamard matrices of order n, say H and K, are equivalent

if K can be obtained by performing a series of row and column permutations and

negations. Hadamard equivalence is also symmetric, reflexive and transitive. Thus

we can define an equivalence class of a Hadamard matrix to be the set of all Hadamard

matrices to which it is equivalent. The following definition provides us with a standard

presentation of Hadamard matrices.

Definition 2.6. A normalized Hadamard matrix is a Hadamard matrix in which

every entry in the first row and the first column is 1.

In the previous example, the matrices H1, H2 and H4 are all normalized Hadamard

matrices. It is straightforward to see that given any Hadamard matrix H, we can

multiply rows and columns whose first entries are −1 by −1 to normalize the matrix.

This observation is summarized in the following proposition.

Proposition 2.7. Any Hadamard matrix is equivalent to a normalized Hadamard

matrix.

2.1.2 Existence of Hadamard Matrices

We have now established the necessary framework to prove the following result, which

gives us a well-known existence condition for a Hadamard matrix of order n.

Proposition 2.8. If H is a Hadamard matrix of order n > 2, then n ≡ 0 (mod 4).

Proof. From Proposition 2.8, we know H is equivalent to a normalized Hadamard

matrix. Thus, without loss of generality, we can assume H is normalized. Then, it

is clear that the first entry of every column of H will be 1. As the entries of H are

±1, the possible second and third entries of any column of H will be 1, 1, or 1,−1, or
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−1, 1, or −1,−1. Suppose that there are a columns whose second and third entries

are 1, 1, b columns whose second and third entries are 1,−1, c columns whose second

and third entries are −1, 1 and d columns whose second and third entries are −1,−1.

By permitting columns we have the following visual presentation of the normalized

Hadamard matrix.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1

1 1 · · · 1 1

1 1 · · · 1 1
...⏞ ⏟⏟ ⏞

a columns

1 1 · · · 1 1

1 1 · · · 1 1

− − · · · − −
...⏞ ⏟⏟ ⏞

b columns

1 1 · · · 1 1

− − · · · − −

1 1 · · · 1 1
...⏞ ⏟⏟ ⏞

c columns

1 1 · · · 1 1

− − · · · − −

− − · · · − −
...⏞ ⏟⏟ ⏞

d columns

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then, as H is a Hadamard matrix of order n, we know the rows of H are orthogonal,

giving us the following system of equations.

a+ b+ c+ d = n since the order of H is n,

a+ b− c− d = 0 as rows one and two are orthogonal,

a− b+ c− d = 0 as rows one and three are orthogonal,

a− b− c+ d = 0 as rows two and three are orthogonal.

A straightforward calculation verifies that the above system has the unique solution

a = b = c = d =
n

4
.

As each of the variables a, b, c, d represents some number of columns, a, b, c and d

must be divisible by 4. Therefore, we have that a+ b+ c+ d = n ≡ 0 (mod 4).

We have already seen Hadamard matrices of order 1, 2, and 4. Table 1 shows the

number of known equivalence classes of Hadamard matrices of order n for n ≤ 40.

Aside from the number of equivalence classes dropping from 5 to 3 as we move from
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Hadamard matrices of order 16 to order 20, the data indicates a rapidly growing

number of equivalence classes for larger orders. The largest order completely classified

is 32, which was done by Kharaghani and Tayfey-Rezaie in [10]. The lower bounds

of inequivalent Hadamard matrices of order 36 and 40 are found in [5]. A natural

question to ask now is whether n being a multiple of 4 is not just an existence

condition, but instead a sufficient condition for the existence of a Hadamard matrix

of order n. This condition is known as the Hadamard Conjecture and is believed to

be true.

Conjecture 2.9. There exists a Hadamard matrix of order n if and only if n = 1, 2

or n ≡ 0 (mod 4).

order inequivalent matrices

1 1

2 1

4 1

8 1

12 1

16 5

20 3

24 60

28 487

32 13710027

36 > 15000000

40 > 366000000000

Table 2.1: Number of equivalence classes of Hadamard matrices of order n ≤ 40.

Currently, there are 3 possible multiples of 4 less than 1000 for which no Hadamard

matrix of that order is known. These orders are 668, 716 and 892. Previously, the

smallest order which was not known was 428, which was discovered by Kharaghani
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and Tayfey-Rezaie in 2004 [9], making 668 the smallest order for which the Hadamard

Conjecture remains open.

In the upcoming section, we present some ways to construct infinite classes of

Hadamard matrices.

2.2 Constructions

Although Hadamard matrices are named after the French mathematician Jacques

Hadamard, the first constructions were a result of Sylvester in 1867 [27], approxi-

mately 26 years before Hadamard published his results in 1893. Sylvester was curious

about the combinatorial properties of these matrices and began his work on Hadamard

matrices as a way to solve a tessellation problem. We now showcase Sylvester’s result,

which gives the first discovered infinite class of Hadamard matrices.

Theorem 2.10 (Sylvester, [27]). If H is a Hadamard matrix of order n, then the

block matrix ⎛⎜⎝H H

H −H

⎞⎟⎠
is a Hadamard matrix of order 2n.

Proof. Since H is a Hadamard matrix of order n, we use the fact that HHT = nIn

to simplify the following matrix multiplication.⎛⎜⎝H H

H −H

⎞⎟⎠
⎛⎜⎝H H

H −H

⎞⎟⎠
T

=

⎛⎜⎝H H

H −H

⎞⎟⎠
⎛⎜⎝HT HT

HT −HT

⎞⎟⎠
=

⎛⎜⎝HHT +HHT HHT −HHT

HHT −HHT HHT +HHT

⎞⎟⎠
=

⎛⎜⎝2nIn 0

0 2nIn

⎞⎟⎠
= 2nI2n.
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Using Theorem 2.10, Sylvester was able to prove the existence of the Hadamard

matrices of order 2n. The Hadamard matrices of order 2n obtained from Sylvester’s

construction are called the Sylvester Hadamard matrices.

Corollary 2.11 (Sylvester, [27]). Let n ∈ N. Then there exists a Hadamard matrix

of order 2n.

Proof. The proof follows by induction on n. When n = 0, H1 is the corresponding

Hadamard matrix of order 1. When n = 1, H2 is the corresponding Hadamard matrix

of order 2. Suppose that H2n exists for some n ≥ 1. Then applying Theorem 2.10 we

see

H2n+1 =

⎛⎜⎝H2n H2n

H2n −H2n

⎞⎟⎠
is a Hadamard matrix of order 2n+1. Therefore, there exists a Hadamard matrix of

order 2n for all n ∈ N.

Jacques Hadamard would then generalize Sylvester’s result in 1893, whose study

of Hadamard matrices was motivated by trying to answer the maximal determinant

problem. The maximal determinant problem commonly refers to finding the largest

determinant of a matrix with elements in {1,−1}. However, Hadamard was not only

intrigued by the determinants of ±1-matrices but also interested in the determinants

of matrices with complex entries. In his 1893 paper [6], Hadamard presented his

determinant bound, commonly referred to as Hadamard’s inequality. This result

was presented without reference to matrices, instead, Hadamard used determinant to

refer to the homogeneous polynomial of degree n having n2 variables, which comes

from calculating the determinant of a matrix of order n whose entries are commuting

indeterminates. The result using modern terminology is shown below.
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Theorem 2.12 (Hadamard’s inequality). Let M be the matrix having rows ri, then

| det(M)| ≤
n∏︂

i=1

∥ri∥ .

Equality in Hadamard’s inequality is achieved if and only if the rows are orthogonal.

We now showcase an immediate consequence of Hadamard’s inequality.

Corollary 2.13. Let M be a matrix having entries ±1. Then

| det(M)| ≤ nn/2.

Hadamard realized that the Sylvester Hadamard matrices attained this bound.

Hence, the matrices that attain the determinant bound of nn/2 are now called Hadamard

matrices. In this thesis, Hadamard also produced Hadamard matrices of order 12 and

20 and extended Sylvester’s construction. However, to show Hadamard’s generalized

construction, we must first define the Kronecker product. We begin by giving the

definition.

Definition 2.14. Let A = (aij) be an n × m matrix, and let B = (bij) be a p × q

matrix. The Kronecker product A⊗B of the matrices A and B is the np×mq block

matrix

A⊗B =

⎛⎜⎜⎜⎜⎝
a11B · · · a1mB
...

. . .
...

an1B · · · anmB

⎞⎟⎟⎟⎟⎠ .

The Kronecker product is interesting for various reasons. For instance, the Kro-

necker product is bilinear and associative. Furthermore, for matrices of the appropri-

ate dimension, the Kronecker product satisfies the mixed-product property (property

2). Let A,B,C and D be matrices over a commutative ring of appropriate dimension

(meaning that AC and BD exist), then the Kronecker product satisfies the usual

properties of bilinearity and associativity, as well as the following properties:

1. (A+B)⊗ (C +D) = A⊗ C + A⊗D +B ⊗ C +B ⊗D,
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2. (A⊗B)(C ⊗D) = (AC)⊗ (BD),

3. (rA)⊗B = A⊗ (rB) = r(A⊗B) for any scalar r,

Example 2.15. Among the list of properties of the Kronecker product, commutativity

is not listed. Aside from specific examples, A⊗ B and B ⊗ A are different matrices.

However, as shown in [21] these matrices are still permutationally equivalent. For

example, if A = I2 and B = J2, then

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and

B ⊗ A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Hadamard did not present his generalized construction in terms of Kronecker prod-

ucts. However, using the Kronecker product and some of its properties, we can

more easily demonstrate Hadamard’s results, while also introducing an important

tool which will be used in future constructions.

Theorem 2.16 (Hadamard, [6]). If H is a Hadamarmd matrix of order n and K is

a Hadamard matrix of order k, then H ⊗K is a Hadamard matrix of order nk.

Proof. Using Property 2 of the Kronecker product we simplify

(H ⊗K)(H ⊗K)T = (HHT )⊗ (KKT ) = (nIn)⊗ (kIk) = nkInk.
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Example 2.17. We have already seen Sylvester Hadamard matrices of order 2 and

4. Using the Kronecker product we create a Sylvester Hadamard matrix of order 8:

H2 ⊗H4 =

⎛⎜⎝1 1

1 −

⎞⎟⎠⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 − 1 −

1 1 − −

1 − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 − 1 − 1 − 1 −

1 1 − − 1 1 − −

1 − − 1 1 − − 1

1 1 1 1 − − − −

1 − 1 − − 1 − 1

1 1 − − − − 1 1

1 − − 1 − 1 1 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2.3 Classifications

In this section, we introduce and give examples of some special types of Hadamard

matrices.

Definition 2.18. Let H be a Hadamard matrix of order n. Then H is a skew-type

Hadamard matrix if H +HT = 2In.

Example 2.19. The following is a skew-type Hadamard matrix of order 8:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

− 1 − − 1 − 1 1

− 1 1 − − 1 − 1

− 1 1 1 − − 1 −

− − 1 1 1 − − 1

− 1 − 1 1 1 − −

− − 1 − 1 1 1 −

− − − 1 − 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Another formulation of the definition states that H is a skew-type Hadamard

matrix of order n, if H = A + In, where AT = −A. We now state the following fact

about skew-type Hadamard matrices.
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Remark 2.20. If H = A+ In, then H is a skew-type Hadamard matrix of order n if

and only if A is a skew-symmetric conference matrix of order n.

Recently, there has been a significant effort put towards classifying skew-type

Hadamard matrices of order 36. In the 2024 [1], it was shown that there are at

least 157132 SH-inequivalent skew-type Hadamard matrices of order 36 (Note that

SH-inequivalent means there does not exist a signed permutation matrix P such

that H = PKP T ). To understand the magnitude of the task that is the classifica-

tion of Hadamard matrices of order 36, it is shown in [7] that there are only 7227

SH-inequivalent skew-type Hadamard matrices of order 32. A straightforward com-

putation shows that there are approximately 1900 times more Hadamard matrices

than skew-type Hadamard matrices of order 32. Using this value, we can use the

157132 known SH-inequivalent skew-type Hadamard matrices to estimate that if this

pattern holds, there are likely over 300 million inequivalent Hadamard matrices of

order 36.

The next two special types of Hadamard matrices are closely related.

Definition 2.21. A Hadamard matrix H is regular if all row sums are equal.

We present a well-known property of regular Hadamard matrices.

Lemma 2.22. Let H be a regular Hadamard matrix of order n. Then the absolute

value of the row and column sums must be
√
n.

Proof. Let ri denote the row sums of H and let j be the column vector of all ones of

length n. First, we will calculate the row sums of H. Observe that

(Hj)T (Hj) = jTHTHj = jTnInj = njT j = n2.

Thus
n∑︂

i=1

∥ri∥2 = n2
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and since H is regular, each ∥ri∥2 = n, and so ∥ri∥ =
√
n as desired. To see that the

column sums of H are also
√
n restate the argument above by using HT in place of

H.

As the row sum of a Hadamard matrix must be an integer, the above result also

proves that a regular Hadamard matrix of order n can only exist if n is a square.

Definition 2.23. Let H be a Hadamard matrix of order n2. Then H is a Bush-

type Hadamard matrix if it is partitioned into n2 square blocks of size n, all row and

column sums of nondiagonal blocks are 0, and all row and column sums of diagonal

blocks are n.

Since the row and column sums of all off-diagonal blocks of a Bush-type are zero,

and the row and column sums of diagonal blocks are n, the row and column sums of

a Bush-type Hadamard matrix of order n2 will be n. Thus a Bush-type Hadamard

matrix is always a regular Hadamard matrix.

Example 2.24. The following is a (regular) Bush-type Hadamard matrix of order

16. ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 − − 1 − 1 − 1 − − 1
1 1 1 1 1 1 − − − 1 − 1 − 1 1 −
1 1 1 1 − − 1 1 1 − 1 − − 1 1 −
1 1 1 1 − − 1 1 − 1 − 1 1 − − 1
1 1 − − 1 1 1 1 1 − − 1 1 − 1 −
1 1 − − 1 1 1 1 − 1 1 − − 1 − 1
− − 1 1 1 1 1 1 − 1 1 − 1 − 1 −
− − 1 1 1 1 1 1 1 − − 1 − 1 − 1
1 − 1 − 1 − − 1 1 1 1 1 1 1 − −
− 1 − 1 − 1 1 − 1 1 1 1 1 1 − −
1 − 1 − − 1 1 − 1 1 1 1 − − 1 1
− 1 − 1 1 − − 1 1 1 1 1 − − 1 1
1 − − 1 1 − 1 − 1 1 − − 1 1 1 1
− 1 1 − − 1 − 1 1 1 − − 1 1 1 1
− 1 1 − 1 − 1 − − − 1 1 1 1 1 1
1 − − 1 − 1 − 1 − − 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In Section 6.1 we will show how to use Latin squares, which are objects described

in Chapter 4, to construct Bush-type Hadamard matrices. We introduce one last

special type of Hadamard matrix. We begin with a preliminary definition.
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Definition 2.25. A circulant matrix (or equivalently array) is the matrix where each

row is rotated one element to the right relative to the row directly above. A circulant

matrix can be written only using its first row as shown below.

circ

(︃
1 2 · · · n

)︃
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 2 · · · n

n 1 · · · n− 1
...

...
. . .

...

2 3 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, we define the back-circulant matrix as the matrix where each row is

rotated one element to the left relative to the row directly above and is denoted as

bcirc(r) where r is the first row of a matrix.

This definition can also be generalized. Suppose that the entries 1, 2, . . . , n are

k× k matrices. In this case, the resulting nk×nk matrix is made up of k× k blocks.

Such a matrix is said to be block-circulant or block-back-circulant.

Definition 2.26. A circulant Hadamard matrix is a Hadamard matrix such that each

row is rotated one element to the right relative to the row directly above.

However, circulant Hadamard matrices are very rare. There exist only two known

examples of circulant Hadamard matrices, which are given below.

circ(1) = (1), circ

(︃
− 1 1 1

)︃
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
− 1 1 1

1 − 1 1

1 1 − 1

1 1 1 −

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Apart from the circulant Hadamard matrices of order 1 and 4, it is believed that no

other circulant Hadamard matrices exist. In [20], Bernhard Schmidt verified that no

circulant Hadamard matrices exist for all but 26 orders less than 104.

Although there are very few circulant Hadamard matrices, circulant matrices are

highly useful and will be referred back to in upcoming sections.
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Chapter 3

Generalizations

Due to their remarkable properties, Hadamard matrices have led researchers to gen-

eralize away from the stringent requirements placed on the entries which can ap-

pear within these matrices. In particular, retaining their orthogonality property,

Hadamard matrices can be generalized to include the 0 entry, leading to weighing

matrices. Alternatively, they can be generalized to include the complex roots of

unity, leading to Butson Hadamard matrices. Furthermore, these matrices can even

be generalized to include both complex roots of unity and the 0 entry, which leads to

complex weighing matrices. Throughout this chapter, we will focus our discussion on

the three mentioned generalizations. However, Hadamard matrices can be general-

ized to other types of orthogonal designs. For further insights on the various possible

types of orthogonal designs, we refer the reader to [22].

3.1 Weighing Matrices

The applications of weighing matrices range from error corrections to experimental

design and coding theory. The name weighing matrix comes from their use in opti-

mally measuring individual weights of multiple objects. For example, if you consider

a balance scale used for weighing objects, we can add weight to the measurement of

an object by adding a weight on one side, and subtract weight by adding a weight on

the opposite side. Consider each row of a weighing matrix as representing a specific
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measurement, and each column as representing a specific predetermined reference

weight. Adding a weight on one side will correspond to a 1 in the corresponding

column of the matrix while adding a weight on the opposite side will correspond to

a −1 in the corresponding column. Not adding a specific weight will correspond to a

0. Thus, the ij-th entry is 1 if the j-th reference weight was placed on the opposite

side of the object in the i-th trial, −1 if the j-th weight was placed on the same side

as the object in the i-th trial, and 0 if the j-th weight was not used in the i-th trial.

Doing this with smaller and smaller weights each time in turn reduces the statistical

variance of the measurement. In summary, weighing matrices are highly versatile

mathematical objects with many uses. We now state a formal definition.

Definition 3.1. A weighing matrix of order n and weight k, denoted W (n, k) is an

n× n square matrix W with entries in {0, 1,−1}, such that WW T = kIn.

From the definition of a weighing matrix, we know that rows of a W (n, k) will be

pairwise orthogonal. If W is a W (n, k) then from straightforward matrix multiplica-

tion we can verify the following properties hold:

• W TW = kIn,

• W−1 = k−1W T ,

• There are k non-zero entries in every row and column.

As mentioned, weighing matrices are also a generalization of Hadamard matrices. If

W is a W (n, n) (i.e., k = n), then WW T = nIn, and so W is a Hadamard matrix.

Another special case of weighing matrices is when k = n − 1. A weighing matrix

W (n, n− 1) is called a conference matrix.
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Example 3.2. Consider the matrices

W1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1

1 0 1 − − 1

1 1 0 1 − −

1 − 1 0 1 −

1 − − 1 0 1

1 1 − − 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, W2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 1 0 1 0 0

0 − 1 1 0 1 0

0 0 − 1 1 0 1

1 0 0 − 1 1 0

0 1 0 0 − 1 1

1 0 1 0 0 − 1

1 1 0 1 0 1 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

W1 is a symmetric W (6, 5) and W2 is a circulant W (7, 4). Since the weight of W1 is

one less the order, W1 is a conference matrix.

3.1.1 Existence

Naturally, when learning about a new object questions relating to the object’s ex-

istence often arise. To help answer this question, we will now show some simple

non-existence conditions for weighing matrices. The following proposition and its

proof are found in [22].

Proposition 3.3. Suppose n is odd. If there exists a W (n, k), then

1. k is a square

2. n− 1 ≤ (n− k)2 − (n− k)

Proof. Suppose there exists a W (n, k). Part 1 follows by computing det(W ). Notice

that

det(W )2 = det(WW T ) = det(kIn) = kn.

Hence, det(W ) = kn/2 and as n is odd, it follows that k must be a square.

To prove Part 2, square all the entries of W , and let A be the resulting (0, 1)-matrix.

The matrix A will have k ones in every row and column. Then AJn = ATJn = kJn
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and so AATJn = kATJn = k2Jn. Denoting the rows of A by r1, r2, . . . , rn, we can see

n∑︂
i=1

ri · rj = k2.

If we now fix a row rj. Then we have∑︂
i ̸=j

ri · rj = k2 − k.

As the rows of W are pairwise orthogonal, the inner product between distinct rows

of A must be even. Define B = J − A to be the (0, 1)-matrix which has n − k ones

in every row and column. Then as n is odd, the inner product between distinct rows

of B is odd and so must be at least 1. Applying the same result as we saw for A to

the matrix B we have ∑︂
i ̸=j

ri · rj = (n− k)2 − (n− k).

Therefore

n− 1 ≤ (n− k)2 − (n− k)

as each inner product of distinct rows must be at least 1.

Before proving our next non-existence result, we state a few preliminary lemmas.

We begin by stating two well-known theorems from number theory. The first is an

elementary result of Fermat.

Lemma 3.4. If n ∈ Z+, then n is the sum of two squares if and only if every prime

of the form 4k + 3 in the prime factorization of n appears as an even power.

Lemma 3.5. For any non-negative integer n, there exist integers k1, k2, k3, k4 ∈ Z+

such that n = k2
1 + k2

2 + k2
3 + k2

4.

Lemma 3.6. Define n = k2
1 + k2

2 + k2
3 + k2

4 and let

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k1 k2 k3 k4

−k2 k1 −k4 k3

−k3 k4 k1 −k2

−k4 −k3 k2 k1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then C−1 = 1
n
CT .

Proof. Simple matrix multiplication shows that

C
(︁ 1
n
CT

)︁
=

1

n

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k1 k2 k3 k4

−k2 k1 −k4 k3

−k3 k4 k1 −k2

−k4 −k3 k2 k1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k1 −k2 −k3 −k4

k2 k1 k4 k3

k3 −k4 k1 k2

k4 k3 −k2 k1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
1

n

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n 0 0 0

0 n 0 0

0 0 n 0

0 0 0 n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= I4.

We now prove the final non-existence result for weighing matrices included in this

section. For more existence and non-existence results see [22].

Proposition 3.7. Let n ≡ 2 (mod 4). A W (n, k) exists only if k is the sum of two

squares.

Proof. Let W = (wij) be a W (n, k). For the case of n = 2, a W (2, k) exists for both

k = 1 = 12 + 02 and k = 2 = 12 + 12. Namely, I2 is a W (2, 1) and the Hadamard

matrix H2 is a W (2, 2). Thus we can assume n = 4m + 2 for some positive integer

m. For 1 ≤ i ≤ v define

Lj =
n∑︂

i=1

mijxi,

for some indeterminates x1, . . . , xn. Then careful algebraic simplifications give us

L2
j =

(︃ n∑︂
i=1

mijxi

)︃2

=
n∑︂

i=1

n∑︂
h=1

mijmhjxixh
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and so

n∑︂
j=1

L2
j =

n∑︂
j=1

n∑︂
i=1

n∑︂
h=1

mijmhjxixh

=
n∑︂

i=1

n∑︂
h=1

(︃ n∑︂
j=1

mijmhj

)︃
xixh

=
n∑︂

i=1

n∑︂
h=1

kxixh

= k

(︃ n∑︂
j=1

xi

)︃2

.

We now transform the variables x1, . . . , xn into new indeterminates y1, . . . , yn, which

will be made up of linear combinations of x′
is. First, let k = k2

1 + k2
2 + k2

3 + k2
4 for

k1, k2, k3, k4 ∈ Z+ and let C be the matrix defined in Lemma 3.6. For 1 ≤ h ≤ m let

(y4h−3, y4h−2, y4h−1, y4h) = (x4h−3, x4h−2, x4h−1, x4h)C.

Additionally let yn−1 = xn−1 and yn−2 = xn−2. From Lemma 3.6 we have CCT = nI4

and so for 1 ≤ h ≤ m it follows that

y24h−3 + y24h−2 + y24h−1 + y24h

= (y4h−3, y4h−2, y4h−1, y4h)(y4h−3, y4h−2, y4h−1, y4h)
T

= (x4h−3, x4h−2, x4h−1, x4h)C((x4h−3, x4h−2, x4h−1, x4h)C)T

= (x4h−3, x4h−2, x4h−1, x4h)CCT (x4h−3, x4h−2, x4h−1, x4h)
T

= k(x2
4h−3 + x2

4h−2 + x2
4h−1 + x2

4h).

Thus
n∑︂

j=1

L2
j = ky2n + ky2n−1 +

n−2∑︂
i=1

y2i .

Recall that each Li is defined as an integral sum of xi’s. As C
−1 = CT we can express

each xi as some rational combination of the yi’s. First,

L1 =
n∑︂

i=1

eiyi
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for some rational ei. If e1 ̸= 1 let y1 = L1, and if e1 = 1, then let y1 = −L1. By

doing this, we have expressed y1 as a rational linear combination of y2, . . . , yn, such

that L2
1 = y21. Thus

n∑︂
j=2

L2
j = ky2n + ky2n−1 +

n−2∑︂
i=2

y2i .

Continuing this process, we can eliminate the variables y2, . . . , yn−1, which simplifies

to

L2
n−1 + L2

n = ky2n + ky2n−1.

If we let yn = 1 and yn−1 = 0, we can see that k = L2
n−1+L2

n is a sum of two rational

squares. Then without loss of generality, assume k = (a/c)2 + (b/c)2 for a, b, c ∈ Z

where each fraction is reduced. Thus, kc2 = a2+b2 and since c shares no prime factors

with a or b, every prime of the form 4l + 3 will appear as an even power. Therefore,

by Lemma 3.4, k is the sum of two squares as desired.

In the next section, we showcase a construction for conference matrices and relate

conference matrices to Hadamard matrices

3.1.2 Paley’s Construction

In Chapter 2, we showcased Sylvester’s construction for Hadamard matrices of order

2n, n ∈ N. Sylvester’s construction was the first infinite class of Hadamard matrices.

However, this construction did not deal with Hadamard matrices whose orders were

not powers of two. This left open questions relating to the existence of Hadamard

matrices of order 12 and 20. As we have seen, in his 1893 paper, Hadamard extended

Sylvester’s construction and presented Hadamard matrices of order 12 and 20. How-

ever, these Hadamard matrices were not claimed to be found by using any form of

a replicable construction. It would not be until 1933, that Paley would discover a

connection between Field theory and Hadamard matrices, which would culminate in

a general construction for Hadamard matrices, including those of order 12 and 20. In

this section, we will work towards demonstrating Paley’s construction for Hadamard
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matrices of order 2q+2 whenever q ≡ 1 (mod 4) and q+1 whenever q ≡ −1 (mod 4)

for a prime power q. We begin with a necessary definition.

Definition 3.8. Suppose q is an odd prime power. Let Fq denote the finite field of

order q, and suppose x ∈ Fq \ {0}. We say that x is a quadrtatic residue if it is a

square in Fq, and x is a quadratic non-residue if it is not a square in Fq. The element

0 is neither a quadratic residue nor a quadratic non-residue. Finally, define QR(q) to

be the set containing the quadratic residues of Fq and QN(q) to be the set containing

quadratic non-residues of Fq.

In other words, x ∈ Fq \ {0} is a quadratic residue if x = y2 for some y ∈ Fq,

and a quadratic non-residue of no such y exists. The next proposition unveils the

cardinalities of QR(q) and QN(q).

Proposition 3.9. Let q be an odd prime power. Then there are (q − 1)/2 quadratic

residues and (q − 1)/2 quadratic non-residues in Fq (i.e., |QR(q)| = |QN(q)| =

(q − 1)/2).

Proof. First, notice that (x)2 = (−x)2 for any x ∈ Fq. Using this fact, note that

the map ϕ : Fq \ {0} ↦→ Fq \ {0} defined by ϕ(x) = x2 for x ∈ Fq \ {0} is a two-

to-one mapping. Thus, ϕ is a group homomorphism and | kerϕ| = 2. By the first

isomorphism theorem we have

ϕ(Fq \ {0}) ∼= (Fq \ {0})/ kerϕ.

Then as ϕ(Fq \ {0}) is a subgroup of Fq \ {0} we can apply Lagrange’s theorem to

obtain

|ϕ(Fq \ {0})| =
|Fq \ {0}
| kerϕ|

=
q − 1

2
.

As ϕ(Fq\{0}) = QR(q), we have shown that |QR(q)| = (q−1)/2. Since there are q−1

elements in Fq \ {0}, and every element is either a quadratic residue or a quadratic

non-residue, it follows that |QN(q)| = (q − 1)/2.
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Next, we introduce a new characterization for quadratic residues and non-residues.

Both during and in the sections following this characterization, we will make use

of the well-known fact from field theory that establishes the fact that multiplicative

group (Fq\{0},×) is a cyclic group. A generator of this group is said to be a primitive

element of the field Fq.

Proposition 3.10. Let q be an odd prime power and let ω ∈ Fq be a primitive element

of Fq. Then the set

S =

{︃
ω2i : 0 ≤ i ≤ q − 3

2

}︃
is the set of all quadratic residues in Fq (i.e., QR(q) = S).

Proof. First, notice that |S| = (q − 1)/2. Next, for any xi = ω2i ∈ S we have

xi = (ωi)2 ∈ QR(q). Thus S ⊆ QR(q), and |S| = |QR(q)|. It follows that QR(q) = S

as desired.

Definition 3.11. Let q be an odd prime power, and let Fq denote the finite field of

order q. The quadratic character is a function χq : Fq → {−1, 0, 1} defined by

χq(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x = 0

1 if x ∈ QR(q)

−1 if x ∈ QN(q)

for x ∈ Fq.

The following lemmas show two useful properties of the quadratic character.

Lemma 3.12. Let q be an odd prime power. Then∑︂
x∈Fq

χq(x) = 0.

Proof. Define the set

R = {x2 : x ∈ Fq, x ̸= 0}.

We can prove that R is a multiplicative subgroup of Fq having index 2. As R is the

set of all quadratic residues of Fq \ {0}, the coset of R, say N , will be the set of all
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quadratic non-residues of Fq \ {0}. As χq(0) = 0 and R and its coset N have the

same cardinality, it follows that∑︂
x∈Fq

χq(x) = |R| − |N |+ χq(0) = 0.

Lemma 3.13. Let q be an odd prime power. If y ̸= 0 then∑︂
x∈Fq

χq(x)χq(x+ y) = −1.

Proof. Since χq(0) = 0, then χq(0)χq(0 + y) = 0. If x ̸= 0, then using the fact that

Fq is a field, there exists a unique z ∈ Fq such that x+ y = xz. Note that since y ̸= 0

it is easily seen that z ̸= 1. As x takes on all values in Fq except for 0, then z will

take on all values in Fq except for the value 1. Thus∑︂
x∈Fq

χq(x)χq(x+ y) =
∑︂
x∈Fq

χq(x)
2χq(z)

=
∑︂

z∈Fq\{1}

χq(z)

= 0− χq(1)

= −1

since
∑︁

z∈Fq
χq(z) = 0.

We now define a matrix construction first described in 1933 by English mathemati-

cian Raymond Paley.

Definition 3.14. Working in Fq, we define the Paley matrix P = [pij] to be the q× q

matrix in which the rows and columns are indexed by Fq, where the ij-th entry of P

is given by pij = χq(i− j) for i, j ∈ Fq.

As χq(i − j) = χq(−1)χq(j − i), P will be symmetric if q ≡ 1 (mod 4) as this

implies χq(−1) = 1. Similarly, if q ≡ −1 (mod 4), χq(−1) = −1 and so P will

be skew-symmetric. The following is an immediate consequence of the previous two

lemmas.
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Lemma 3.15. Let P be a Paley matrix. Then

• PJq = JPq = 0 (by Lemma 3.12),

• PP T = qIq − Jq (by Lemma 3.13).

We now present an important construction of conference matrices used by Paley

to construct Hadamard matrices.

Theorem 3.16. Let q be an odd prime power. If q ≡ 1 (mod 4), then there exists a

symmetric conference matrix of order q + 1. If q ≡ −1 (mod 4), then there exists a

skew-symmetric conference matrix of order q + 1.

Proof. Case 1: If q ≡ 1 (mod 4), define

W1 =

⎛⎜⎝ 0 1Tq

1q P

⎞⎟⎠ .

Case 2: If q ≡ −1 (mod 4), define

W2 =

⎛⎜⎝ 0 1Tq

−1q P

⎞⎟⎠ .

Using Lemma 3.15, it we can verify that W1 is symmetric and W1W
T
1 = qIq+1.

Similarly W2 is skew-symmetric and W2W
T
2 = qIq+1.

Theorem 3.17. Let W be a symmetric conference matrix of order n. Then the

matrix

H =

⎛⎜⎝W + In W − In

W − In −W − In

⎞⎟⎠
is a Hadamard matrix of order 2n.

Proof. As C is symmetric, H will also be symmetric. To simplify the multiplication

of HHT we make some simplifications. First, observe that

(W + In)
2 + (W − In)

2 = 2W 2 + 2I2n

= 2(n− 1)In + 2In

= 2nIn
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Similarly, since (W + In)
2 = (−W − In)

2 we have (−W − In)
2 + (W − In)

2 = 2nIn.

Next, observe that

(W + In)(W − In) + (W − In)(−W − In) = W 2 − I2n −W 2 + I2n = 0

and

(W − In)(W + In) + (−W − In)(W − In) = W 2 − I2n −W 2 + I2n = 0.

Using these identities we have

HHT =

⎛⎜⎝W + In W − In

W − In −W − In

⎞⎟⎠
⎛⎜⎝W + In W − In

W − In −W − In

⎞⎟⎠
=

⎛⎜⎝(2n)In 0

0 (2n)In

⎞⎟⎠
= 2nI2n,

which completes the proof.

Example 3.18. The following is a W (6, 5) (i.e., a conference matrix of order 6).

W1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1
1 0 1 − − 1
1 1 0 1 − −
1 − 1 0 1 −
1 − − 1 0 1
1 1 − − 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using Theorem 3.17 we form the following Hadamard matrix of order 12.

⎛⎜⎝W1 + I6 W1 − I6

W1 − I6 −W1 − I6

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 − 1 1 1 1 1
1 1 1 − − 1 1 − 1 − − 1
1 1 1 1 − − 1 1 − 1 − −
1 − 1 1 1 − 1 − 1 − 1 −
1 − − 1 1 1 1 − − 1 − 1
1 1 − − 1 1 1 1 − − 1 −
− 1 1 1 1 1 − − − − − −
1 − 1 − − 1 − − − 1 1 −
1 1 − 1 − − − − − − 1 1
1 − 1 − 1 − − 1 − − − 1
1 − − 1 − 1 − 1 1 − − −
1 1 − − 1 − − − 1 1 − −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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It is also possible to use a skew-symmetric conference matrix of order 12 constructed

using Theorem 3.16 to construct a Hadamard matrix of order 12. Using the following

skew-symmetric conference matrix of order 12

W2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1 1 1 1 1
− 0 − 1 − − − 1 1 1 − 1
− 1 0 − 1 − − − 1 1 1 −
− − 1 0 − 1 − − − 1 1 1
− 1 − 1 0 − 1 − − − 1 1
− 1 1 − 1 0 − 1 − − − 1
− 1 1 1 − 1 0 − 1 − − −
− − 1 1 1 − 1 0 − 1 − −
− − − 1 1 1 − 1 0 − 1 −
− − − − 1 1 1 − 1 0 − 1
− 1 − − − 1 1 1 − 1 0 −
− − 1 − − − 1 1 1 − 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we can construct a skew-symmetric Hadamard matrix of order 12.

W2 + I12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1
− 1 − 1 − − − 1 1 1 − 1
− 1 1 − 1 − − − 1 1 1 −
− − 1 1 − 1 − − − 1 1 1
− 1 − 1 1 − 1 − − − 1 1
− 1 1 − 1 1 − 1 − − − 1
− 1 1 1 − 1 1 − 1 − − −
− − 1 1 1 − 1 1 − 1 − −
− − − 1 1 1 − 1 1 − 1 −
− − − − 1 1 1 − 1 1 − 1
− 1 − − − 1 1 1 − 1 1 −
− − 1 − − − 1 1 1 − 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following corollary generalizes the constructions seen in the previous example.

Corollary 3.19. Let q be a prime power. If q ≡ 1 (mod 4) then there is a Hadamard

matrix of order 2q+2. If q ≡ −1 (mod 4), then there is a skew-symmetric Hadamard

matrix of order q + 1.

Proof. If q ≡ 1 (mod 4) then there exists a symmetric conference matrix of order

q+1, say W1. Then by Theorem 3.17, there exists a Hadamard matrix of order 2q+2
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given by

H =

⎛⎜⎝W1 + In W1 − In

W1 − In −W1 − In

⎞⎟⎠ .

If q ≡ −1 (mod 4) then there exists a skew-symmetric conference matrix of order

q + 1, say W2. We know W2W
T
2 = qIq+1. As W2 is skew-symmetric, it follows that

W2 + Iq+1 is the desired Hadamard matrix of order q + 1.

Applying Theorem 2.16 to Corollary 3.19 presents the following result.

Corollary 3.20. Let q be a prime power and let n be the order of a Hadamard matrix.

If q ≡ 1 (mod 4) then there is a Hadamard matrix of order 2n(q + 1). If q ≡ −1

(mod 4), then there is a Hadamard matrix of order n(q + 1).

Remark. Another way to state Paley’s result found in Theorem 3.17 is by using

Kronecker products. For a prime power q ≡ 1 (mod 4), a straightforward calculation

shows that if W1 is a conference matrix of order q + 1

H =

⎛⎜⎝1 1

1 −

⎞⎟⎠⊗W1 +

⎛⎜⎝1 −

− −

⎞⎟⎠⊗ Iq+1

is the same Hadamard matrix of order 2q + 2. However, it is possible to extend this

result even further.

Lemma 3.21. Let W be a matrix of order m such that W T = σW , σ = ±1 and

WW T = (m−1)Im. Let A and B be matrices of order n such that AAT = BBT = nIn

and ABT = −σBAT . Define K = A⊗ Im +B ⊗W . Then KKT = nmInm.

31



Proof. Notice that σ2 = 1. Straight-forward computation shows that

KKT = (A⊗ Im +B ⊗W )(A⊗ Im +B ⊗W )T

= (A⊗ Im +B ⊗W )(AT ⊗ Im +BT ⊗W T )

= (AAT ⊗ Im) + (ABT ⊗W T ) + (BAT ⊗W ) + (BBT ⊗WW T )

= (nIn ⊗ Im) + (−σBAT ⊗ σW ) + (BAT ⊗W ) + (nIn ⊗ (m− 1)Im)

= (nIn ⊗ Im)− σ2(BAT ⊗W ) + (BAT ⊗W ) + (nIn ⊗ (m− 1)Im)

= nInm + n(m− 1)Inm

= nmInm.

Corollary 3.22. If q be a prime power q ≡ 1 (mod 4), and H is a Hadamard matrix

of order n, then there exists a Hadamard matrix of order n(q + 1).

Proof. Let W be a symmetric conference matrix of order q+1 coming from Theorem

3.16. Define

M = In/2 ⊗

⎛⎜⎝0 1

− 0

⎞⎟⎠ ,

and let B = MH. Notice that MT = −M and MMT = In. Then, note that

BBT = (MH)(MH)T = MHHTMT = nMMT = nIn.

Next, observe that

HBT = H(MH)T = HHTMT = −nM.

SinceW = σW T , with σ = 1 the matricesW , H and B satisfy the required conditions

of Lemma 3.21. Therefore K = H ⊗ Iq+1 + B ⊗W is the desired Hadamard matrix

of order n(q + 1).
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3.2 Complex Case

Throughout this section, we will use ∗ to denote the conjugate transpose of a matrix.

Refer to the list of symbols and Section 1.3 for further information on notation. To

begin our discussion of this section, we define the following notation.

Definition 3.23. Let ξq = e
2πi
q be a primitive complex q-th root of unity. Then define

the set ⟨ξq⟩ = {ξjq : 0 ≤ j ≤ q − 1}.

We can now extend the definition of weighing matrices by giving a general definition

of weighing matrices over ⟨ξq⟩.

Definition 3.24. A complex weighing matrix of order n and weight k is an n × n

square matrix W with entries in Ωq = {0} ∪ ⟨ξq⟩ such that WW ∗ = kIn. We denote

a complex weighing matrix with the given parameters by CW (n, k; q).

Example 3.25. Let ξ be a primitive third root of unity. Denoting ξ3 = 1, the

following is a block-back-circulant CW (15, 9; 3).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 ξ ξ2 1 ξ2 ξ 0 0 0
0 0 0 1 1 1 ξ ξ2 1 ξ2 ξ 1 0 0 0
0 0 0 1 1 1 ξ2 1 ξ ξ 1 ξ2 0 0 0
1 1 1 1 ξ ξ2 1 ξ2 ξ 0 0 0 0 0 0
1 1 1 ξ ξ2 1 ξ2 ξ 1 0 0 0 0 0 0
1 1 1 ξ2 1 ξ ξ 1 ξ2 0 0 0 0 0 0
1 ξ ξ2 1 ξ2 ξ 0 0 0 0 0 0 1 1 1
ξ ξ2 1 ξ2 ξ 1 0 0 0 0 0 0 1 1 1
ξ2 1 ξ ξ 1 ξ2 0 0 0 0 0 0 1 1 1
1 ξ2 ξ 0 0 0 0 0 0 1 1 1 1 ξ ξ2

ξ2 ξ 1 0 0 0 0 0 0 1 1 1 ξ ξ2 1
ξ 1 ξ2 0 0 0 0 0 0 1 1 1 ξ2 1 ξ
0 0 0 0 0 0 1 1 1 1 ξ ξ2 1 ξ2 ξ
0 0 0 0 0 0 1 1 1 ξ ξ2 1 ξ2 ξ 1
0 0 0 0 0 0 1 1 1 ξ2 1 ξ ξ 1 ξ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As for the case of real weighing matrices, we know that the rows of a CW (n, k; q)

will be pairwise orthogonal. It is straightforward to verify that such a matrix will

have k non-zero entries in every row and column. In the special case where k = n,

a CW (n, n; k) provides another natural generalization of Hadamard matrices. This
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generalization is named after A.T. Butson for his research developments in generalized

Hadamard matrices [4].

Definition 3.26. A Butson Hadamard matrix of order n is an n× n square matrix

H, with entries in ⟨ξq⟩ such that HH∗ = nIn. Such a matrix is denoted BH(n; q).

Note a BH(n; 2) is just a real Hadamard matrix of order n. Naturally, a BH(n; q)

is said to be normalized if the first entry in every row and column is 1.

Example 3.27. As before, let ξ be a primitive third root of unity and denote ξ3 = 1,

the following is a block-circulant BH(9; 3).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 ξ2 ξ 1 ξ ξ2

1 1 1 ξ 1 ξ2 ξ2 1 ξ
1 1 1 ξ2 ξ 1 ξ ξ2 1
1 ξ ξ2 1 1 1 1 ξ2 ξ
ξ2 1 ξ 1 1 1 ξ 1 ξ2

ξ ξ2 1 1 1 1 ξ2 ξ 1
1 ξ2 ξ 1 ξ ξ2 1 1 1
ξ 1 ξ2 ξ2 1 ξ 1 1 1
ξ2 ξ 1 ξ ξ2 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Example 3.28. Let ζ be a primitive 9th root of unity and denote ζ9 = 1. The

following is a BH(9; 9). ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
1 ζ ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8

1 ζ2 ζ4 ζ6 ζ8 ζ ζ3 ζ5 ζ7

1 ζ3 ζ6 1 ζ3 ζ6 1 ζ3 ζ6

1 ζ4 ζ8 ζ3 ζ7 ζ2 ζ6 ζ ζ5

1 ζ5 ζ ζ6 ζ2 ζ7 ζ3 ζ8 ζ4

1 ζ6 ζ3 1 ζ6 ζ3 1 ζ6 ζ3

1 ζ7 ζ5 ζ3 ζ ζ8 ζ6 ζ4 ζ2

1 ζ8 ζ7 ζ6 ζ5 ζ4 ζ3 ζ2 ζ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The construction in Example 3.28 can be extended to every positive integer n

by using the Discrete Fourier Transform. We showcase the result in the following

proposition, but first, we define the function

δx,y =

{︄
1 if x = y,

0 if x ̸= y.

Proposition 3.29. There exists a BH(n;n) for any positive integer n.
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Proof. Let ξ be a primitive n-th root of unity. Define H = (hij) to be the n × n

matrix whose rows and columns are indexed by 0, 1, . . . , n − 1, given by hij = ξ(i·j).

The matrix is given below.

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ξ0·0 ξ0·1 · · · ξ0·(n−1)

ξ1·0 ξ1·1 · · · ξ1·(n−1)

...
...

. . .
...

ξ(n−1)·0 ξ(n−1)·1 · · · ξ(n−1)·(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We now show that H is a BH(n;n). Let r0, r1, . . . , rn−1 be the rows of H. It suffices

to show that for any 0 ≤ i, j ≤ n− 1

ri · r∗j = nδi,j.

Using the definition of hij, observe that

ri · r∗j =
n−1∑︂
k=0

hik · hjk

=
n−1∑︂
k=0

ξi·kξj·k

=
n−1∑︂
k=0

ξi·kξj·(n−k)

=
n−1∑︂
k=0

ξk·(i−j).

Clearly, if i = j then we have
n−1∑︂
k=0

ξk·0 = n.

In the case that i ̸= j let m = i− j. To see that

n−1∑︂
k=0

ξkm = 0

note that if m and n are coprime, the summation is adding up all the n-th roots of

unity. If gcd(m,n) = p > 1, then let q = n/p. The above sum is then equivalent to

adding up all the q-th roots of unity p times. Therefore

ri · r∗j =
n−1∑︂
k=0

ξk·(i−j) = nδi,j
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as desired.

In general, if we restrict ourselves to the fourth root of unity, a CW (n, k; 4) is

called a quaternary weighing matrix, and similarly a BH(n, 4) is called a quaternary

complex Hadamard matrix.
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Chapter 4

Latin Squares

In this section, we showcase a new combinatorial object which will play an important

role in Chapter 6. We begin by defining Latin squares.

Definition 4.1. A Latin square of order n is an n × n array L, with entries from

a set X where |X| = n, and every entry of L contains an element of X, such that

every row and every column of L is a permutation of X.

It is not hard to show that there exists a Latin square of order n ≥ 1. Taking the

first row to be [︃
1 2 · · · n

]︃
we can form an n × n circulant array, where each row is rotated one element to the

right relative to the row directly above, which is easily verified to be a Latin square.

Similarly, we can form a back-circulant array, where each row is rotated one element

to the left relative to the row directly above, also resulting in a Latin square. For the

remainder of this section, unless explicitly stated otherwise we will take the symbol

set X = {1, 2, . . . , n}.

Example 4.2. The following are Latin squares of order n for 1 ≤ n ≤ 4:

L1 =

[︃
1

]︃
, L2 =

⎡⎢⎣ 1 2

2 1

⎤⎥⎦ , L3 =

⎡⎢⎢⎢⎢⎣
1 2 3

3 1 2

2 3 1

⎤⎥⎥⎥⎥⎦ , L4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

37



We now define the notion of equivalence in relation to Latin squares. Performing

any combination of the following operations transforms one Latin square to another

equivalent (or isomorphic) Latin square.

• Swapping any two rows.

• Swapping any two columns.

• Changing all the rows to columns and columns to rows (i.e., taking the trans-

pose).

• Permuting the symbols in X.

Next, we expand the possible functionality of Latin squares by delving into the notion

of orthogonality.

4.1 Orthogonal Latin Squares

In 1782, Leonhard Euler proposed the problem of arranging 36 military officers into a

6× 6 square array. Each of the officers had to come from one of 6 different regiments

and must hold one of 6 possible ranks. Placing the condition that no two officers from

the same regiment hold the same rank, Euler attempted to ask the question of whether

it was possible to organize the officers into a square such that in each row and column,

there is exactly one officer from each regiment and one precisely one officer of each

rank. For the first step, Euler arranged the regiments, by setting aside 6 positions in

the square to be filled by officers from that regiment. He would then try to assign

ranks to the officers in these 6 positions. In other words, Euler was trying to find

two Latin squares of order 6, such that when superimposed, there would be precisely

one officer from each regiment who holds each of the 6 possible ranks. In other

words, the superimposition of the two Latin squares would contain every possible

pair of regiment and rank. Using Latin characters to denote regiment, Euler called

the first square a ”Latin square”, and the square containing both rank and regiment
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was called a ”Graeco-Latin square” since he used Greek letters to denote rank. In

other words, the square containing rank, when superimposed on the Latin square

containing regiments should form the desired ”Graeco-Latin square” which contains

one officer from each regiment who holds each of the 6 possible ranks. However, Euler

was unable to find such a square. On the other hand, Euler was able to easily produce

Graeco-Latin squares of order n for any n ̸≡ 2 (mod 4). It was also not hard for Euler

to see that there was no Graeco-Latin square of order 2. Thus, Euler conjectured that

Graeco-Latin squares of order n do not exist for any n ≡ 2 (mod 4). Equivalently,

this conjecture can be stated in reference to orthogonal Latin squares, which we now

define.

Definition 4.3. Two Latin squares L1 and L2 of order n with entries from X and Y

respectively are orthogonal if the superposition of L1 and L2 given by {(L1(i, j), L2(i, j)) :

1 ≤ i, j ≤ n} contains every ordered pair in X × Y .

An equivalent definition for orthogonality states that L1 and L2 are orthogonal

if for every x ∈ X and y ∈ Y , there is a unique cell (i, j) such that L1(i, j) =

x and L2(i, j) = y. In the context of Euler’s problem, Euler created the Latin

square and then attempted to fill this square with the 6 possible ranks. In other

words, Euler skipped the step of creating the second Latin square and instead worked

exclusively with the superposition of the two squares. Euler’s conjecture using the

above definition states that there do not exist orthogonal Latin squares of order n

for any n ≡ 2 (mod 4). Although this conjecture was shown to be correct for n = 6,

in 1959 Ernest Parker published [15], which showcased a construction for orthogonal

Latin squares of order 10. Soon after, a general construction that produced pairs

of orthogonal Latin squares of order n ≡ 2 (mod 4), n > 6 was published by Raj

Chandra Bose and Sharadchandra Shankar Shrikhande in [2].

Example 4.4. There are no orthogonal Latin squares of order 2. Consider L3, which

was the Latin square of order 3 shown in Example 4.2. As shown below, the Latin
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square L′
3 together with L3 form a pair of orthogonal Latin squares of order 3.

L3 =

⎡⎢⎢⎢⎢⎣
1 2 3

3 1 2

2 3 1

⎤⎥⎥⎥⎥⎦ , L′
3 =

⎡⎢⎢⎢⎢⎣
1 2 3

2 3 1

3 1 2

⎤⎥⎥⎥⎥⎦ .

The superposition of L3 and L′
3 is as follows.⎡⎢⎢⎢⎢⎣
(1, 1) (2, 2) (3, 3)

(3, 2) (1, 3) (2, 1)

(2, 3) (3, 1) (1, 2)

⎤⎥⎥⎥⎥⎦ .

However, it is possible to show that there does not exist a Latin square orthogonal to

L4, which was the Latin square of order 4 from Example 4.2. Nevertheless, orthogonal

Latin squares of order 4 exist, as shown below.⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We give one more example which will be utilized in an upcoming construction.

Example 4.5. The following are orthogonal Latin squares of order 8.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8

8 1 2 3 4 5 6 7

7 8 1 2 3 4 5 6

6 7 8 1 2 3 4 5

5 6 7 8 1 2 3 4

4 5 6 7 8 1 2 3

3 4 5 6 7 8 1 2

2 3 4 5 6 7 8 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8

3 4 1 2 7 8 5 6

5 6 7 9 1 2 3 4

7 8 5 6 3 4 1 2

6 5 8 7 2 1 4 3

8 7 6 5 4 3 2 1

2 1 4 3 6 5 8 7

4 3 2 1 8 7 6 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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4.1.1 Constructions

Orthogonal Latin squares of order 1 exist, however, these objects are unsurprisingly

uninteresting. We now examine several constructions for orthogonal Latin squares

for larger orders.

Theorem 4.6. Let n > 1 be odd. Then there exists orthogonal Latin squares of order

n.

Proof. Let X = Zn and define

L1(i, j) = (i+ j) (mod n),

L2(i, j) = (i− j) (mod n).

Holding i constant we can see each row of L1 and L2 will contain all elements of Zn.

Similarly, holding j constant note that each column of L1 and L2 will also contain

all elements of Zn. Thus L1 and L2 are Latin squares. To prove that L1 and L2 are

orthogonal we must show that the superposition of L1 and L2 contains every ordered

pair (x, y) ∈ Zn×Zn. If we let L1(i, j) = x and L2(i, j) = y, we must solve the system

x ≡ i+ j (mod n),

y = i− j (mod n).

Adding the two equations gives

i+ j + i− j = 2i ≡ (x+ y) (mod n),

and subtracting gives

i+ j − (i− j) = 2j ≡ (x− y) (mod n).

Since n > 1 is odd, 2−1 = (n + 1)/2. Therefore, the system has a unique solution

given by

i ≡ (x+ y)(n+ 1)/2 (mod n),

j ≡ (x− y)(n+ 1)/2 (mod n).
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As (x, y) ∈ Zn × Zn was arbitrary, we have shown that the superposition of L1 and

L2 contains every ordered element in Zn × Zn, completing the proof.

Example 4.7. Suppose n = 5. Using Theorem 4.6, we are able to construct the

following orthogonal Latin squares.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 3 2 1

1 0 4 3 2

2 1 0 4 3

3 2 1 0 4

4 3 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that

L1 = bcirc

[︃
0 1 2 3 4

]︃
,

and

L2 = circ

[︃
0 4 3 2 1

]︃
.

Next, we showcase an operation very similar to the Kronecker product, which will

allow us to construct a new Latin square from two smaller Latin squares. Let L1 and

L2 be Latin squares of order n1 and n2 defined on the sets X and Y respectively.

The direct product of L1 and L2 is denoted as L1 × L2, and is the n1n2 × n1n2 array

defined by

(L1 × L2)((i1, i2), (j1, j2)) = (L1(i1, j1), L2(i2, j2)).

Note that L1×L2 is defined on the symbol set X ×Y . To see why L1×L2 is a Latin

square, consider the row (i1, i2). To find the element (x, y) for x ∈ X and y ∈ Y ,

note that since L1 is a Latin square there is a unique column indexed by j1 such that

L1(i1, j1) = x. Similarly, since L2 is a Latin square there is a unique column indexed

by j2 such that L2(i2, j2) = y. Thus (L1 × L2)((i1, i2), (j1, j2)) = (x, y) as desired.

Similarly, we find the element (x, y) in the column (j1, j2) as follows. Note that since

L1 is a Latin square there is a unique row indexed by i1 such that L1(i1, j1) = x.
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Similarly, since L2 is a Latin square there is a unique row indexed by i2 such that

L2(i2, j2) = y. Thus (L1 × L2)((i1, i2), (j1, j2)) = (x, y). This discussion establishes

the following lemma.

Lemma 4.8. Let L1 and L2 be Latin squares of order n1 and n2 defined on the symbol

sets X and Y respectively. Then L1 × L2 is a Latin square of order n1n2 over the

symbol set X × Y .

Example 4.9. Let

L1 =

⎡⎢⎣ 1 2

2 1

⎤⎥⎦ , L2 =

⎡⎢⎣ 2 1

1 2

⎤⎥⎦ .

Then L1 × L2 is given by

L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1, 2) (1, 1) (2, 2) (2, 1)

(1, 1) (1, 2) (2, 1) (2, 2)

(2, 2) (2, 1) (1, 2) (1, 1)

(2, 1) (2, 2) (1, 1) (1, 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We now prove that the direct product preserves orthogonality.

Theorem 4.10. Let L1 and L2 be orthogonal Latin squares of order n1 on the symbol

set X and let M1 and M2 be orthogonal Latin squares of order n2 on the symbol set

Y . Then L1 ×M1 and L2 ×M2 are orthogonal Latin squares of order n1n2.

Proof. By Lemma 4.8 we know L1×M1 and L2×M2 are both Latin squares of order

n1n2. We want to show that the superposition of L1 × M1 and L2 × M2 contains

every ordered pair in (X × Y ) × (X × Y ). Consider the ordered pair of symbols

((x1, y1), (x2, y2)). To find the cell ((i1, i2), (j1, j2)) containing the symbol, we must

have

(L1 ×M1)((i1, i2), (j1, j2)) = (x1, y1),

(L2 ×M2)((i1, i2), (j1, j2)) = (x2, y2).
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By the definition of direct product, the first equation means that

L1(i1, j1) = x1,

M1(i2, j2) = y1,

and the second means that

L2(i1, j1) = x2,

M2(i2, j2) = y2.

Since L1 and L2 are orthogonal, there must be a unique cell (i1, j1) such that the

superposition of L1 and L2 contains (x1, x2). Similarly, since M1 and M2 are orthog-

onal, there must be a unique cell (i2, j2) such that the superposition of M1 and M2

contains (y1, y2). Therefore, the cell ((i1, i2), (j1, j2)) is the unique cell containing the

symbol ((x1, y1), (x2, y2)).

Utilizing all of our results, we are now able to match Euler’s findings to produce

Latin squares of order n ̸≡ 2 (mod 4).

Theorem 4.11. If n ̸≡ 2 (mod 4) then there exist orthogonal Latin squares of order

n.

Proof. If n ≡ 1 (mod 4) or n ≡ 3 (mod 4) then n is odd, and so we can apply

Theorem 4.6 to obtain orthogonal Latin squares of order n.

Then suppose n ≥ 4. If n = 2k for k ≥ 2. In Example 4.4 we have seen orthogonal

Latin squares of order 4, which correspond to k = 2 and in Example 4.5 we showcased

orthogonal Latin squares of order 8, corresponding to k = 3. To show that orthogonal

Latin squares of order 2k exist for all k we use a proof by induction. Using Theorem

4.10 we know that since there exists a pair of orthogonal Latin squares of order 4, the

direct product of these Latin squares with themselves generate a pair of orthogonal

Latin squares of order 16 = 24. Then assume orthogonal Latin squares of order 2k

and 2k−1 exist for some k ≥ 4. To form a pair of orthogonal Latin squares of order
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2k+1 employ Theorem 4.10 to the orthogonal Latin squares of order 2k−1 and 4. This

gives us a pair of orthogonal Latin squares of order 2k−122 = 2k+1, completing the

induction. Hence, there exist orthogonal Latin squares of order 2k for all integers

k ≥ 2.

If n ̸= 2k then write n = 2km for some odd integer m. Since n ≡ 0 (mod 4), we

must have k ≥ 2. Sincem is odd, by Theorem 4.6 there exist orthogonal Latin squares

of order m. As shown above, there also exist orthogonal Latin squares of order 2k for

all k ≥ 2. Applying Theorem 4.10 to the orthogonal Latin squares of order 2k and

m, we can form a pair of orthogonal Latin squares of order 2km as desired.

Another interesting property of orthogonal Latin squares is that permuting symbols

will not disrupt orthogonality. To see why, suppose L1 and L2 are two orthogonal

Latin squares over the symbol set X. As L1 and L2 are orthogonal, the superposition

of the Latin squares will contain each ordered pair (x1, y1) precisely once. If we apply

a permutation to L1 which maps x1 to x2 and a permutation to L2 mapping y1 to y2,

the ordered pair (x2, y2) will also appear precisely once, as (x1, y1) appeared once. As

this is true for any permutation of entries ofX, every pair (x2, y2) will appear precisely

once, and so L1 and L2 will retain orthogonality through applying a permutation to

the symbol set X.

4.1.2 Existence

An inferential question to ask after learning about orthogonal Latin squares is can

orthogonal Latin squares exist in more than just pairs? To answer this question, we

first define this concept and then present an example to answer this question.

Definition 4.12. A set of k Latin squares, say {L1, L2, . . . , Lk} is mutually orthogo-

nal if every pair Li and Lj, 1 ≤ i < j ≤ k are orthogonal. We call such a set a set of

mutually orthogonal Latin squares, abbreviated as MOLS. A set of k MOLS of order

n will be denoted as k MOLS(n).
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Example 4.13. The following is a set of 3 MOLS(4).

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The above example answers the question of whether orthogonal Latin squares can

exist in groups larger than 2. A much more interesting question to ask now is what

is how many mutually orthogonal Latin squares of order n can we find for each n?

To partially answer this question, we present the following Theorem.

Theorem 4.14. If S is a set of MOLS(n), then |S| ≤ n− 1.

Proof. Let S be a set of MOLS(n) over the symbol set X = {1, 2, . . . , n}. According

to our previous discussion, we can permute the symbols of each Latin square, and

retain the property of orthogonality. Thus, we may assume that the first row of each

Latin square contains the symbols, 1, 2, . . . , n, written in this particular order.

Then consider the entry in the first column of the second row of some Latin square

in the set of MOLS(n), say L. Since the first column of every Latin square in this set

of MOLS already contains 1 in the first row, this entry cannot be 1. Then suppose

this entry is some i ∈ X, where i ̸= 1. As the pair (i, i) appears in the first row of

the superposition of any two Latin squares, any Latin square orthogonal L must have

the entry in its first column and second row be a symbol j ∈ X, such that j ̸= 1, and

j ̸= i. Therefore, there can be a maximum of n − 2 Latin squares orthogonal to L,

and so in total, there can be no more than n− 1 Latin squares in S, completing the

proof.

In the case that |S| meets the bound of Theorem 4.14 with equality, we say S is

a complete set of MOLS(n). A complete set of MOLS is interesting because it is

equivalent to a projective plane. In 1938, Bose [3] showed that there does not exist a
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projective plane of order 6 by relating the existence of a projective plane of order n

to a complete set of MOLS(n). We state Bose’s result without proof.

Theorem 4.15 (Bose, [19]). Let n ≥ 3. There exists a projective plane of order n if

and only if there exists a complete set of n− 1 MOLS(n).

In Example 4.13 the set of 3 MOLS(4) forms a complete set. Naturally, the next

question to ask is when is it possible to form a complete set of MOLS(n). In other

words, for what n can we find n−1 MOLS(n)? We can partially answer this question

with the following result.

Theorem 4.16. If q ≥ 3 is a prime power, then there exists q − 1 MOLS(q).

Proof. Consider the case when q is prime. We will construct q MOLS(q) over the

symbol set Zq = {0, 1, . . . , q − 1}. Note that since q is prime Zq is a finite field of

order q. We construct the q − 1 Latin squares Lk for k ∈ {1, 2, . . . , q − 1} as follows.

Define

Lk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · q − 1

k k + 1 · · · k + (q − 1)

2k 2k + 1 · · · 2k + (q − 1)
...

...
. . .

...

(q − 1)k (q − 1)k + 1 · · · (q − 1)k + (q − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where we index the rows and columns by elements Zq = {0, 1, . . . , q − 1}. We first

show that each Lk is a Latin square. It is readily verified that the entries in each row

are permutations of Zq. Then consider the j-th column of Lk. If i1k + j ≡ i2k + j

(mod q), where i1, i2 are the indices of two rows of Lk, it follows that i1k ≡ i2k

(mod q). Since Zq is a field, there exists l = k−1. Multiplying both sides of this

equivalence by l we see i1 ≡ i2 (mod q), meaning that the entries in the j-th column

of Lk are all distinct. As j was arbitrary, every Lk is a Latin square.

Next, we must verify that each pair of Latin squares is orthogonal. Suppose that

k1, k2 ∈ {1, 2, . . . , q − 1}, k1 ̸= k2. Then suppose that when we superimpose Lk1 and
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Lk2 , the ordered pair in the position indexed by (i1, j1) is the same as the ordered

pair in the position indexed by (i2, j2), for some i1, i2, j1, j2 ∈ Zq. Then using the

definition of Lk1 we have

i1k1 + j1 ≡ i2k1 + j2 (mod q), (⋆)

and using the definition of Lk2 we have

i1k2 + j1 ≡ i2k2 + j2 (mod q). (⋆⋆)

Subtracting the two equations above we see

i1k1 + j1 − (i1k2 + j1) ≡ i2k1 + j2 − (i2k2 + j2) (mod q)

i1k1 − i1k2 ≡ i2k1 − i2k2 (mod q)

i1(k1 − k2) ≡ i2(k1 − k2) (mod q).

Then as k1 ̸= k2, we must have k1 − k2 ̸= 0. Since Zq is a field, there exists some

l = (k1 − k2)
−1 ∈ Z. Multiplying both sides by l we see i1 ≡ i2 (mod q). Then using

(⋆) or (⋆⋆) we can verify that j1 ≡ j2 (mod q). Thus, we have shown that the position

indexed by (i1, j1) and the position indexed by (i2, j2) are the same. Therefore, the

superposition of Lk1 and Lk2 contains each ordered pair precisely once, meaning that

Lk1 and Lk2 are orthogonal. As k1, k2 were arbitrary, we see that {L1, L2, . . . , Lq−1}

is a set of q − 1 MOLS(q).

When q is a prime power, the proof is essentially the same, however, instead of

working over the Zq, we work over Fq. In this case, the Latin squares Lk are defined

for k ∈ Fq \ {0}, and we index the rows and columns of Lk by elements of Fq.

We have now seen that it is possible to find a complete set of MOLS(n) whenever n

is a prime power. However, circling back to our discussion of Euler’s original problem,

it has been shown that there does not exist a pair of orthogonal Latin squares of order

6. Hence, there does not exist a complete set of MOLS(6).
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Moreover, in 1989 [13] Clement Wing Hong Lam, Henry Thiel and Stan Swiercz

used a computer search to prove that there does not exist a projective plane of order

10. Equivalently, this showed that there does not exist a complete set of MOLS(10).

Currently, the largest known set of MOLS(10) contains only two Latin squares. It is

not known if there are sets of MOLS(10) containing more than two Latin squares.

The next open order is 12. The existence of a projective plane of order 12 is

unknown. However, the largest known set of MOLS(12) contains five Latin squares.

It is also unknown if there are sets of MOLS(12) containing more than five Latin

squares.

4.2 Suitable Latin Squares

We can slightly modify the definition of orthogonal Latin squares to help us facilitate

future constructions in Chapter 6. Suitable Latin squares were first introduced by

Holzmann, Kharaghani and Orrick in [8].

Definition 4.17. Let L1 and L2 be two Latin squares defined over the symbol set X.

L1 and L2 are called suitable if every superimposition of each row of L1 on each row

of L2 has only one element in the form (x, x).

In other words, two Latin squares, L1 and L2, are suitable if any row of L1, when

superimposed on a row of L2, agrees in precisely one position. As we defined sets of

mutually orthogonal Latin squares, we can also define sets of mutually suitable Latin

squares.

Definition 4.18. A set of k Latin squares, say {L1, L2, . . . , Lk} is mutually suitable

if every pair Li and Lj, 1 ≤ i < j ≤ k are suitable. We call such a set a set of

mutually suitable Latin squares, abbreviated as MSLS(n).
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Example 4.19. The following is a set of 3 MSLS(4).

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 4 2 3

4 1 3 2

2 3 1 4

3 2 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 3 4 2

3 1 2 4

4 2 1 3

2 4 3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Orthogonal and suitable Latin squares are similar in structure, however, we must

be mindful of their differences. For example, as was shown in Theorem 4.16 and

Theorem 4.14, we usually write sets of mutually orthogonal Latin squares all having

the same first row. But mutually suitable Latin squares cannot be written in this

form, as a row from one Latin square must agree in precisely one column as a row

from another Latin square. Nevertheless, MOLS and MSLS are very closely related.

The following theorem demonstrates how given a pair of orthogonal Latin squares,

we can construct a pair of suitable Latin squares and vice versa.

Theorem 4.20. There are m MOLS(n) if and only if there are m MSLS(n).

Proof. Let S be the set of MOLS(n) over the symbol set X = {1, 2, . . . , n}. Let Lx

and Ly be a pair of orthogonal Latin squares in S, and index the rows and columns

of Lx and Ly by the elements of X. Then suppose that the (i, j) position of Lx is k.

Then perform the transformation where i becomes the entry in the position indexed

by (k, j). Doing this for all i, j ∈ X the transformation ((i, j), k) ↦→ ((k, j), i) gives

L′
x, and doing the same for Ly gives Ly’.

We now show that L′
x and L′

y are Latin squares. First, suppose that the entry k

in the position indexed by (i1, j) is the same as the entry in the position (i2, j) of

L′
x. Then the entry i1 appears in the position indexed by (k, j) in Lx. Similarly, the

entry i2 must also appear in the position indexed by (k, j). Thus i1 = i2, and so the

columns of L′
x are permutations of X. A similar argument shows that the rows of L′

x

are also permutations of X. As the choice of Lx was arbitrary, this is true for any

Latin square in S.
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Next, we show L′
x and L′

y are suitable. Suppose that when superimposing the row

indexed by i1 of L′
x and the row indexed by i2 of L′

y, there are two columns, say j1

and j2, where the entries agree. Let k1 be the entry in the position (i1, j1) of L′
x

and (i2, j1) of L
′
y, and let k2 be the entry in the position (i1, j2) of L

′
x and (i2, j2) of

L′
y. Reversing the transformation, this tells that the superimposition of Lx and Ly

contains the ordered pair (i1, i2) in the position (k1, j1) and the superimposition also

contains the ordered pair (i1, i2) in the position (k2, j2). However, as Lx and Ly are

orthogonal, we must have k1 = k2 and j1 = j2. This means that the row i1 of L′
x

agrees with the entries of row i2 of L
′
y in precisely one position, meaning that L′

x and

L′
y are suitable. As the choice of Lx and Ly was arbitrary, we have shown we can use

a set of m MOLS(n) to form a set of m MSLS(n).

To start with a set of m MSLS(n) and obtain a set of m MOLS(n), the reverse of

the transformation described above gives the desired result.

The following is an immediate consequence of Theorem 4.16 and Theorem 4.20.

Lemma 4.21. If q ≥ 3 is a prime power, then there exists q − 1 MSLS(q).
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Chapter 5

Bent Functions

Outside of novel quantum computing applications, almost all modern computers cre-

ated today run on binary, where the value 1 represents true, and 0 false. Therefore,

it is not difficult to see both the prevalence and usefulness of Boolean algebra (i.e.,

an algebra which deals with operations on logical values with binary values). The

real-world applications of Boolean algebra have resulted in the rapid expansion of

this branch of mathematics, leading to the creation and development of topics closely

related to Boolean algebra. One such example is the topic of bent functions, which we

will specifically focus on. However, before delving into the notion of bent functions,

we must first develop our understanding of Boolean functions.

5.1 Boolean Functions

In this section, we define and state some necessary properties of Boolean functions.

The primary reference for the results in Sections 5.1 and 5.2 is [25].

Definition 5.1. A Boolean function on n variables is a function

f : (Z2)
n → Z2.

Put simply, a Boolean function takes a string of binary as an input, and outputs

either a 1 or a 0. We label Bn to be the set containing all Boolean functions on

n variables. Observing the definition, we can predict that there should be a finite
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number of unique Boolean functions on n variables. Naturally, one may ask how

many Boolean functions exist on n variables. We answer this question in the following

proposition.

Proposition 5.2. There are 22
n
Boolean functions on n variables, i.e., |Bn| = 22

n
.

Proof. Let f ∈ Bn be arbitrary. For any x ∈ (Z2)
n, the Boolean function f(x) gives

us precisely one output. As there are 2n choices for x ∈ (Z2)
n, there are 2n possible

outputs for f(x). Thus, all possible output values of f(x) are contained in (Z2)
2n . As

the choice of f was arbitrary, we have |Bn| = 22
n
.

Boolean functions are highly versatile and have many applications. For example,

one of the primary applications of Boolean functions is in analyzing and creating digi-

tal circuits. Furthermore, Boolean functions give us a novel way to construct Sylvester

Hadamard matrices. First, we outline some preliminary results before showcasing the

construction. Let x, y ∈ (Z2)
n. The inner product of the vectors x, y is defined as

x · y =
n∑︂

i=1

xiyi (mod 2).

Finally, for all x ∈ (Z2)
n define the matrix Sn = (sx,y) where rows and columns of Sn

are indexed by (Z2)
n in lexicographic order, and sx,y = (−1)x·y. The matrix Sn will

form a Sylvester Hadamard matrix of order 2n, as we prove in the following theorem.

Theorem 5.3. Sn is a Hadamard matrix of order 2n.

Proof. It is clear that Sn will be a square matrix of order 2n as there are 2n elements

in (Z2)
n. Let x, y ∈ (Z2)

n. We show that the rows indexed by x and y have an inner

product of 0 when x ̸= y and an inner product of 2n when x = y. We have∑︂
z∈(Z2)n

sx,zsy,z =
∑︂

z∈(Z2)n

(−1)x·z(−1)y·z

=
∑︂

z∈(Z2)n

(−1)x·z+y·z

=
∑︂

z∈(Z2)n

(−1)(x+y)·z.
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If x = y, since we are working modulo 2, x+ y = 0 and the above equation simplifies

to ∑︂
z∈(Z2)n

(−1)0·z =
∑︂

z∈(Z2)n

(−1)0 = 2n.

If x ̸= y then x+ y ̸= 0 and the sum simplifies to 0 as there will be the same number

of 1’s and −1’s. Thus ∑︂
z∈(Z2)n

(−1)(x+y)·z = 0,

showing the inner product of the rows indexed by x and y is 2n when x = y and 0

otherwise.

The above discussion establishes the following.

Corollary 5.4. Let y ∈ (Z2)
n. Then

∑︂
x∈(Z2)n

(−1)x·y = 2nδy,(0,...,0).

Example 5.5. We list the matrices Sn for n = 2, 3, 4 below.

S2 =

⎛⎜⎝ 1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

⎞⎟⎠ , S3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1
1 1 1 1 − − − −
1 − 1 − − 1 − 1
1 1 − − − − 1 1
1 − − 1 − 1 1 −

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and S4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 − − 1 1 − − 1 1 − − 1 1 − − 1
1 1 1 1 − − − − 1 1 1 1 − − − −
1 − 1 − − 1 − 1 1 − 1 − − 1 − 1
1 1 − − − − 1 1 1 1 − − − − 1 1
1 − − 1 − 1 1 − 1 − − 1 − 1 1 −
1 1 1 1 1 1 1 1 − − − − − − − −
1 − 1 − 1 − 1 − − 1 − 1 − 1 − 1
1 1 − − 1 1 − − − − 1 1 − − 1 1
1 − − 1 1 − − 1 − 1 1 − − 1 1 −
1 1 1 1 − − − − − − − − 1 1 1 1
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 −
1 1 − − − − 1 1 − − 1 1 1 1 − −
1 − − 1 − 1 1 − − 1 1 − 1 − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, we define a useful function.
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Definition 5.6. Let F be any real-valued function F : (Z2)
n → R. For any x ∈ (Z2)

n,

the Fourier transform of F is the real-valued function defined by

F̂ (x) =
∑︂

y∈(Z2)n

(−1)x·yF (y).

For an arbitrary set S and any function f : (Z2)
n → S define the row vector ϕ(f)

to be the vector listing all the values of f(x) for x ∈ (Z2)
n in lexicographic order. It

is not hard to see that ϕ(f) will be a vector of length 2n. Following immediately from

how we defined the entries of Sn and the definition of F̂ we have the following result.

Lemma 5.7. For any F : (Z2)
n → R, we have ϕ(F̂ ) = ϕ(F )Sn.

Note that since Sn is symmetric, the above result also implies that ϕ(F̂ ) = Snϕ(F )T .

Corollary 5.8. Let F : (Z2)
n → R. Then ϕ(F̂

ˆ
) = 2nϕ(F ).

Proof. As defined previously, let Sn be the Hadamard matrix of order 2n. By defi-

nition Sn is symmetric. Thus S2
n = 2nI2n . By Lemma 5.7 we have ϕ(F̂ ) = ϕ(F )Sn.

Multiplying on the right by Sn and applying Lemma 5.7 to ϕ(F̂ ) gives

ϕ(F̂
ˆ
) = ϕ(F )S2

n.

Since Sn is a symmetric Hadamard matrix, we have

ϕ(F )S2
n = 2nϕ(F )I2n = 2nϕ(F )

and so we have shown ϕ(F̂
ˆ
) = 2nϕ(F ).

Example 5.9. We now summarize the results above with an example. Consider the

case of n = 4 variables, and the boolean function f = x1x2+x3x4. Then, we find ϕ(f)

by computing all possible inputs in lexicographic order. For example, the first entry

of ϕ(f) is the output of f((0, 0, 0, 0)), the second entry is the output of f((0, 0, 0, 1))

and so on. Doing this, we obtain

ϕ(f) = ( 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 ) .
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Next, define the real valued function F (x) = (−1)f(x) for all x ∈ (Z2)
4. Then,

ϕ(F ) = ( 1 1 1 − 1 1 1 − 1 1 1 − − − − 1 ) .

Next, consider the matrix S4 from Example 5.5. Observe that

S4ϕ(F )T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 − − 1 1 − − 1 1 − − 1 1 − − 1
1 1 1 1 − − − − 1 1 1 1 − − − −
1 − 1 − − 1 − 1 1 − 1 − − 1 − 1
1 1 − − − − 1 1 1 1 − − − − 1 1
1 − − 1 − 1 1 − 1 − − 1 − 1 1 −
1 1 1 1 1 1 1 1 − − − − − − − −
1 − 1 − 1 − 1 − − 1 − 1 − 1 − 1
1 1 − − 1 1 − − − − 1 1 − − 1 1
1 − − 1 1 − − 1 − 1 1 − − 1 1 −
1 1 1 1 − − − − − − − − 1 1 1 1
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 −
1 1 − − − − 1 1 − − 1 1 1 1 − −
1 − − 1 − 1 1 − − 1 1 − 1 − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
−
1
1
1
−
1
1
1
−
−
−
−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
4
4
4̄
4
4
4
4̄
4
4
4
4̄
4̄
4̄
4̄
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ϕ(F̂ )T

where 4̄ denotes −4. Finally, since (S4)
2 = 16I16 we have

ϕ(F̂
ˆ
) =

(︃
16 16 16 16̄ 16 16 16 16̄ 16 16 16 16̄ 16̄ 16̄ 16̄ 16

)︃
= 16ϕ(F ),

where 16̄ denotes −16.

5.2 Bent Functions

So far, we have introduced and proved some useful properties of Boolean functions.

However, with the extensive prevalence of binary within modern technology, the func-

tionality of Boolean functions is not limited to just analyzing and creating digital

circuits and constructing Hadamard matrices. Boolean functions are also used exten-

sively in cryptography for their security applications. Specifically, a special subset

of Boolean functions which are particularly useful are those which are maximally

non-linear. These Boolean functions which are maximally non-linear are called bent

functions. However, before stating a formal definition for bent functions, we must

explore the notion of non-linearity and how it relates to Boolean functions.
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The measure of non-linearity, as the name suggests, is a measure of how far from

the notion of linearity a given function is. In other words, it is a measure of how

hard it is to approximate the function by a linear function. However, to understand

non-linearity, we must understand what it means for a boolean function to be linear.

Undoubtedly, anyone following along will already possess an understanding of linear

functions. Logically, we can extend the notion of linear functions to Boolean functions.

Definition 5.10. Let f ∈ Bn. Then f is a linear function if for all x ∈ (Z2)
n

f(x) = a · x,

for some a ∈ (Z2)
n.

To extend this definition, a function f ∈ Bn which is in the form of

f(x) = a · x+ b

for some a ∈ (Z2)
n and b ∈ Z2 is called an affine function. Notice that when b = 0

in an affine function f , the function fits the definition of a linear function. Thus all

linear functions are affine functions. Observing the definition of linear functions, we

can see that as there are 2n choices for a ∈ (Z2)
n, there are 2n linear functions in Bn.

Similarly, as b = 0 or b = 1, there are 2n+1 affine functions in Bn.

Next, to help objectively measure non-linearity, we define the distance between two

functions f, g ∈ Bn to be equal to the Hamming distance between the vectors ϕ(f)

and ϕ(g), and we denote this value by d(f, g). In other words, the distance between

f and g is given by

d(f, g) = |{x ∈ (Z2)
n : f(x) ̸= g(x)}|.

One way of measuring nonlinearity comes from the use of Fourier coefficients. The

following result relates the Fourier transform of a function f ∈ Bn to the distance

between f and an affine function.
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Theorem 5.11. Let f ∈ Bn, and define F (x) = (−1)f(x). Then for any a ∈ (Z2)
n

we have

d(f, a · x) = 2n−1 − 1

2
F̂ (a)

and

d(f, a · x+ 1) = 2n−1 +
1

2
F̂ (a).

Proof. From the definition of F̂ , observe

F̂ (a) =
∑︂

x∈(Z2)n

(−1)a·x(−1)f(x)

=
∑︂

x∈(Z2)n

(−1)a·x+f(x)

= |{x ∈ (Z2)
n : a · x = f(x)}| − |{x ∈ (Z2)

n : a · x ̸= f(x)}|

= 2n − 2d(f, a · x),

where we use the definition of d(f, g) to simplify the equation in the last step. Solving

for d(f, a · x)

d(f, a · x) = 2n−1 − 1

2
F̂ (a).

Finally, note that f(x) = a · x if and only if f(x) ̸= a · x+ 1. Thus

d(f, a · x) + d(f, a · x+ 1) = 2n.

Solving for d(f, a · x+ 1) gives

d(f, a · x+ 1) = 2n − d(f, a · x) = 2n−1 +
1

2
F̂ (a).

Finally, we define the nonlinearity of f ∈ Bn as

Nf = min{d(f, a · x), d(f, a · x+ 1) : a ∈ (Z2)
n}.

In other words, the nonlinearity of f is equal to the minimum number of different

outputs between f and an affine function in the form of a · x + b for a ∈ (Z2)
n and
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b ∈ Z2. Equivalently, it is equal to the value of the minimum Hamming distance

between ϕ(f) and ϕ(a · x+ b) for a ∈ (Z2)
n and b ∈ Z2.

Applying Theorem 5.11, observe that

Nf = 2n−1 − 1

2
F̂m,

where F̂m = max{|F̂ (x)| : x ∈ (Z2)
n}. We are now able to define bent functions

formally.

Definition 5.12. A bent function is a function f ∈ Bn such that |F̂ (x)| = 2n/2 for

all x ∈ (Z2)
n.

Since |F̂ (x)| must be an integer, a bent function can only exist when f ∈ Bn for

an even n.

Example 5.13. In Example 5.9, we saw for n = 4 variables, and the boolean function

f = x1x2 + x3x4 and the real-valued function F (x) = (−1)f(x) we have

ϕ(f) =

(︃
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

)︃
.

To find the nonlinearity of f we find the minimum Hamming distance between ϕ(f)

and ϕ(a · x+ b) for a ∈ (Z2)
4 and b ∈ Z2. For a =

(︃
0 0 0 0

)︃
note that

ϕ(a · x) =
(︃
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)︃
and d(f, a · x) = 6. Similarly,

ϕ(a · x+ 1) =

(︃
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

)︃
,

and correspondingly d(f, a · x + 1) = 10. To avoid tedious computations for the

remaining choices of a, refer to Example 5.9, where we saw

ϕ(F̂ ) =

(︃
4 4 4 4̄ 4 4 4 4̄ 4 4 4 4̄ 4̄ 4̄ 4̄ 4

)︃
,
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where −4 is written as 4̄. As |F̂ (x)| = 4 for all x ∈ (Z2)
4, f is a bent function on

four variables. Furthermore, observe that

Nf = 24−1 − 1

2
F̂m(x) = 8− 4

2
= 6.

The next theorem shows that this is the maximum nonlinearity for a boolean function

on four variables.

Bent functions are boolean functions that are maximally non-linear. In other

words, a bent function maximizes Nf . The following theorem proves this statement.

Theorem 5.14. Let f ∈ Bn and F (x) = (−1)f(x). Then Nf ≤ 2n−1 − 2n/2−1 and

equality holds if and only if f is a bent function.

Proof. First, suppose f is a bent function. Then |F̂ (x)| = 2n/2 for all x ∈ (Z2)
n.

Hence F̂m(x) = 2n/2 and so

Nf = 2n−1 − 1

2
F̂m(x) = 2n/2 − 2n/2−1.
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Conversely, suppose Nf = 2n−1 − 2n/2−1. Observe that∑︂
x∈(Z2)n

(F̂ (x))2 =
∑︂

x∈(Z2)n

(︃ ∑︂
y∈(Z2)n

(−1)x·yF (y)

)︃2

=
∑︂

x∈(Z2)n

[︃(︃ ∑︂
y∈(Z2)n

(−1)x·yF (y)

)︃(︃ ∑︂
z∈(Z2)n

(−1)x·zF (z)

)︃]︃
=

∑︂
x∈(Z2)n

∑︂
y∈(Z2)n

∑︂
z∈(Z2)n

(−1)x·yF (y)(−1)x·zF (z)

=
∑︂

x∈(Z2)n

∑︂
y∈(Z2)n

∑︂
z∈(Z2)n

(−1)x·y+x·zF (y)F (z)

=
∑︂

x∈(Z2)n

∑︂
y∈(Z2)n

∑︂
z∈(Z2)n

(−1)x·(y+z)F (y)F (z)

=
∑︂

y∈(Z2)n

∑︂
z∈(Z2)n

F (y)F (z)
∑︂

x∈(Z2)n

(−1)x·(y+z)

=
∑︂

y∈(Z2)n

∑︂
z∈(Z2)n

F (y)F (z)2nδy,z

= 2n
∑︂

y∈(Z2)n

(F (y))2

= 2n2n

= 22n.

Note that since F̂ (x) ≤ F̂m for all x ∈ (Z2)
n, and there are precisely 2n possible

choices for x, using the identity found above we have

22n =
∑︂

x∈(Z2)n

(F̂ (x))2 ≤ 2n(F̂m)
2.

Thus 2n/2 ≤ F̂m and so

Nf = 2n−1 − 2n/2−1 ≥ 2n−1 − 1

2
F̂m = Nf ,

implying that F̂m = |F̂ (x)| = 2n/2 for all x ∈ (Z2)
n.

The following lemma will further generalize the sum which was carefully proven

above.

Lemma 5.15. Suppose f ∈ Bn and F = (−1)f . Then for y ∈ (Z2)
n it holds that∑︂

x∈(Z2)n

F̂ (x)F̂ (x+ y) =

{︄
22n if y = (0, . . . , 0),

0 otherwise.
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Proof. The proof for y = (0, . . . , 0) is shown in Theorem 5.14. The proof for y ̸=

(0, . . . , 0) follows closely as shown

∑︂
x∈(Z2)n

F̂ (x)F̂ (x+ y)

=
∑︂

x∈(Z2)n

∑︂
a∈(Z2)n

∑︂
b∈(Z2)n

(−1)x·aF (a)(−1)(x+y)·bF (b)

=
∑︂

a∈(Z2)n

∑︂
b∈(Z2)n

(−1)y·bF (a)F (b)
∑︂

x∈(Z2)n

(−1)x·(a+b)

=
∑︂

a∈(Z2)n

∑︂
b∈(Z2)n

(−1)y·bF (a)F (b)2nδa,b

= 2n
∑︂

a∈(Z2)n

(−1)y·a(F (a))2

= 22nδy,(0,...,0)

where we use the fact that F (a) = ±1 and Corollary 5.4 to simplify the final summa-

tion.

Therefore, it is straightforward to see that on n = 2 variables the function f =

x1x2 is also a bent function. Taking F = (−1)f the Fourier coefficients of F are

ϕ(F̂ ) =

(︃
2 2 2 −2

)︃
with the nonlinearity given by Nf = 22−1 − 22/2/2 = 1. We

have also just shown that on n = 4 variables, the function f = x1x2 + x3x4 is also

bent. It is possible to generalize these results to all even n ≥ 2. We first prove a

useful preliminary result.

Lemma 5.16. Let f1 ∈ Bn and f2 ∈ Bk both be bent functions. Then f ∈ Bn+k

defined by

f = f1 ⊕ f2 = f1(x1, . . . , xn) + f2(xn+1, . . . , xn+k)

is a bent function.

Proof. First, define F = (−1)f , F1 = (−1)f1 and F2 = (−1)f2 . Then let x =

(x1, . . . , xn+k), x1 = (x1, . . . , xn) and x2 = (xn+1, . . . , xn+k) where

x = x1 ⊕ x2 = (x1, . . . , xn, xn+1, . . . , xn+k).
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Observe that for any y ∈ (Z2)
n+k

F̂ (y) =
∑︂

x∈(Z2)n+k

(−1)x·yF (x)

=
∑︂

x1∈(Z2)n, x2∈(Z2)k

(−1)(x1⊕x2)·(y1⊕y2)F1(x1)F2(x2)

=
∑︂

x1∈(Z2)n

∑︂
x2∈(Z2)k

(−1)x1·y1+x2·y2F1(x1)F2(x2)

=
∑︂

x1∈(Z2)n

∑︂
x2∈(Z2)k

(−1)x1·y1(−1)x2·y2F1(x1)F2(x2)

=

(︃ ∑︂
x1∈(Z2)n

(−1)x1·y1F1(x1)

)︃(︃ ∑︂
x2∈(Z2)k

(−1)x2·y2F2(x2)

)︃
= F̂ 1(y1)F̂ 2(y2).

Since f1 is a bent function we have |F̂ n(x1)| = 2n/2 for all x1 ∈ (Z2)
n. Similarly, as

f2 is a bent function we have |F̂ k(x2)| = 2k/2 for all x2 ∈ (Z2)
k. Thus

|F̂ (x)| = 2n/22k/2 = 2(n+k)/2

for all x ∈ (Z2)
n+k. Thus

Nf = 2n+k−1 − 1

2
2(n+k)/2 = 2n+k−1 − 2(n+k)/2−1

meeting the upper bound of Theorem 5.14. Therefore f is a bent function as desired.

We are now able to inductively prove the following result.

Corollary 5.17. Let n be an even integer. Suppose f ∈ Bn is defined by fn =

x1x2 + x3x4 + · · ·+ xn−1xn. Then f is a bent function.

Proof. We have already seen that f2 = x1x2 is a bent function. Then suppose

fm = x1x2 + x3x4 + · · ·+ xm−1xm

is a bent function for some even integer m ≥ 2. Since f2 = xm+1xm+2 is bent, we

apply Lemma 5.16 to see that

fm = fm ⊕ f2 = x1x2 + x3x4 + · · ·+ xm−1xm + xm+1xm+2
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is also a bent function. As m ≥ 2 was an arbitrary even integer, by the principle of

mathematical induction, fm being a bent function implies fm+2 is a bent function.

Therefore, for all even integers n, the function fn is a bent function.

Theorem 5.18. Let f ∈ Bn and F = (−1)f . Define the 2n × 2n matrix Hf = (hx,y)

whose elements are indexed by x, y ∈ (Z2)
n in lexicographic order and hx,y = F (x+y).

Then f is a bent function if and only if Hf is a Hadamard matrix.

Proof. First, suppose Hf is a Hadamard matrix. We must show that |F̂ (x)| = 2n/2.

By our assumption of Hf ∑︂
z∈(Z2)n

hx,zhy,z = 2nδx,y.

Next, let G : (Z2)
n → R be defined by

G(x) =
1

2n/2
F̂ (x).

By Corollary 5.8 note that for any x ∈ (Z2)
n

2nF (x) = F̂
ˆ
(x) =

∑︂
y∈(Z2)n

(−1)x·yF̂ (y)

= 2n/2
∑︂

y∈(Z2)n

(−1)x·yG(y)

= 2n/2Ĝ(x),

and so Ĝ(x) = 2n/2F (x). Then observe that if y = (0, . . . , 0) we have

2nδx,(0,...,0) =
∑︂

z∈(Z2)n

hx,zh(0,...,0),z,

and by definition of Hf observe that∑︂
z∈(Z2)n

hx,zh(0,...,0),z =
∑︂

z∈(Z2)n

F (x+ z)F (z)

=
∑︂

z∈(Z2)n

(︃
1

2n/2
Ĝ(x+ z)

)︃(︃
1

2n/2
Ĝ(z)

)︃
=

1

2n

∑︂
z∈(Z2)n

Ĝ(x+ z)Ĝ(z).
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Following from Corollary 5.15 we have that

1

2n

∑︂
z∈(Z2)n

Ĝ(x+ z)Ĝ(z) =
∑︂

z∈(Z2)n

(−1)x·z(G(z))2

=
∑︂

z∈(Z2)n

(−1)x·z
(︃

1

2n/2
F̂

)︃2

=
1

2n

∑︂
z∈(Z2)n

(−1)x·z(F̂ (z))2.

Thus for a fixed x ∈ (Z2)
n we see that

22nδx,(0,...,0) =
∑︂

z∈(Z2)n

(−1)x·z(F̂ (z))2.

As x is arbitrary, we can apply the definition of Sn to generalize our simplification in

the previous equation to obtain

22n(1, 0, . . . , 0) = ϕ((F̂ (z))2)Sn.

Then multiplying on the right by Sn and simplifying gives

22n(1, 0, . . . , 0)Sn = 2nϕ((F̂ (z))2)

2n(1, 1, . . . , 1) = ϕ((F̂ (z))2)

which shows that |F̂ (z)| = 2n/2 for all z ∈ (Z2)
n, and since F = (−1)f , we have

shown that f ∈ Bn is a bent function as desired.

Conversely, suppose f is a bent function. As f is bent |F̂ (X)| = 2n/2 for all

x ∈ (Z2)
n. Using the same G as defined above, note that

|G(x)| =
⃓⃓⃓⃓

1

2n/2
F̂ (x)

⃓⃓⃓⃓
= 1

meaning that G(x) = (−1)g(x) for some g ∈ Bn. To show Hf is a Hadamard matrix,

we show ∑︂
z∈(Z2)n

hx,zhy,z = 2nδx,y
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for all x, y ∈ (Z2)
n. Observe that

∑︂
z∈(Z2)n

hx,zhy,z =
∑︂

z∈(Z2)n

F (x+ z)F (y + z)

=
∑︂

z∈(Z2)n

(︃
1

2n/2
Ĝ(x+ z)

)︃(︃
1

2n/2
Ĝ(y + z)

)︃
=

1

2n

∑︂
z∈(Z2)n

Ĝ(x+ z)Ĝ(y + z).

Then define w = x + z. Since we are working mod 2, it is straightforward to verify

that x = −x, so note that this implies z = w + x. As z ∈ (Z2)
n and x is fixed w will

take all values in (Z2)
n. Rewriting the variables in terms of w and applying Corollary

5.15 we obtain

1

2n

∑︂
z∈(Z2)n

Ĝ(x+ z)Ĝ(y + z) =
1

2n

∑︂
w∈(Z2)n

Ĝ(w)Ĝ(x+ y + w)

=
1

2n
× 22nδx+y,(0,...,0)

= 2nδx,y

as desired.

5.3 Bent Sequences

Computer chips are used everywhere. These chips are created in various places around

the world by large semiconductor manufacturing companies such as Intel, NVIDIA

and TSMC. However, semiconductor manufacturing is an extremely intricate process.

Since the creation of the first semiconductors in the mid-1900s, advances in semicon-

ductor manufacturing have led to many notable improvements in size, computational

power and efficiency. For example, modern semiconductor wafers are over 2000 times

more dense compared to semiconductors manufactured in the 1970s, with the transis-

tor sizes decreasing from 10 micrometres to under 5 nanometers (i.e., Apple M2 chip

uses a new 5nm technology). In 1965, Gordon Moore, co-founder of Intel observed

that the number of transistors on a microchip doubles nearly annually. However, in

66



1975, Moore revised his statement to say that the number of transistors would double

every two years. This famous observation is referred to as ”Moore’s Law”. This ob-

servation gives a great, historically accurate indication of the increasing complexity

of semiconductors. The image below showcases the exponential growth of transistor

counts since the early 1970s.

Figure 5.1: Graph of increasing transistor counts found in Our World in Data [18]

However, as chips become smaller and smaller, the process becomes increasingly

delicate. To give some reference for how small chip sizes are, consider that a silicon

atom measures 0.2nm, and when working with sub-5 nm transistor technology, deal-

ing with imperfections in the manufacturing process becomes unavoidable. Therefore,

this has led semiconductor manufacturers to seek out practical solutions to both iden-

tifying and authenticating semiconductors. This is possible, because semiconductors

manufactured in the same facility, at the same time, and even coming from the same

silicone wafer have inherent manufacturing variations. This allows for the differenti-

ation and identification of two devices which may appear to be identical. However,

these inherent variations are intrinsically random, and cannot be replicated by the
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manufacturer.

One practical solution for both authenticating and identifying devices which man-

ufacturers currently rely on are physically unclonable functions (PUFs). The primary

references for the applications of PUFs are [14] and [26]. To summarize, these func-

tions allow manufacturers to authenticate semiconductors by generating a unique

cryptographic key, leading to greater security, even when the semiconductors have in-

herent imperfections. These keys can then be recorded to a whitelist, which can later

be referenced to verify that a device is not a counterfeit or has been overproduced

during the manufacturing process. Furthermore, PUFs can be used in cryptographic

algorithms to provide further security. Specifically, PUFs re-generate their static ran-

dom values at every startup, providing a significant improvement in security against

tampering attacks. To measure the security of a PUF, we examine the quality of ran-

domness of the responses as the PUF responds to different challenges. This measure

of the randomness of the responses of the PUF is commonly referred to as entropy

[17]. The challenges come in the form of cryptographic keys. A large number of

challenges (i.e., a large code) will of course result in a greater entropy. However, it is

of interest to maximize the bits of entropy given a fixed number of challenges.

The primary reference for many of the results found in this Section is [24]. We

begin by stating some preliminary definitions which will lay the groundwork for our

discussion of bent sequences.

Definition 5.19. Let C be a binary code of length n over the alphabet

A = {±1}. The deviation of a vector x ∈ C is given by

θ(C, x) = max
y∈C

|⟨x, y⟩|.

As C is a binary code, it can also be shown that ⟨x, y⟩ = n−2d(x, y), where d(x, y)

denotes the Hamming distance of the two codewords x and y.

Definition 5.20. The total deviation of the code C is defined as

θ(C) = min
x∈An

θ(C, x) = min
x∈An

max
y∈C

|⟨x, y⟩|.
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Recall that our goal is to maximize entropy for a fixed number of codewords. One

possible approach is to minimize total deviation. Hence, the optimal choices for the

first M = n challenges (i.e., codewords) are given by the n rows of a Hadamard

matrix of order n. Next, consider that the entropy for a given codeword depends on

the joint probabilities of the signs of the Gaussian variables (previously labelled ∆i).

Thus the entropy depends on the identifier vector B, which itself is dependent on

the joint probabilities for each codeword. The following results summarize the above

discussion.

Lemma 5.21. The entropy of a PUF with challenge code C is determined by the

Gram matrix CCT whose entries represent the inner products of the codewords {⟨x, y⟩ :

x, y ∈ C}.

Lemma 5.22. Equivalent challenge codes give the same entropy and permuting the

order of codewords gives the same entropy.

Proof. The proof that equivalent challenge codes give the same entropy follows from

the fact that permuting coordinates and multiplying coordinates by −1 does not

change the inner products of codewords. The proof of the second permuting the

order of the codewords does not change entry follows from the fact that permuting

the order of the codewords simply permutes the components of the identifier B, which

also does not change the entropy.

Lemma 5.23. Replacing codewords with their binary complements does not change

the entropy.

Proof. By replacing a codeword c ∈ C, we replace Bc with −Bc in the identifier B.

This does not change the entropy.

Previously, we have mentioned the possibility that minimizing the total deviation

for a code maximizes entropy. For the case of M = n, this result has been proven

true, and it has been shown that the optimal choices for the first M = n challenge
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codewords are given by Hadamard codes. Hadamard codes are binary codes whose

codewords are pairwise orthogonal. In other words, we can think of the M = n

codewords of a Hadamard code as the n rows of a Hadamard matrix of order n.

However, when adding an additional codeword to the n codewords already present in

the Hadamard code, the question of whether minimizing the total deviation of theM+

1 codewords maximizes entropy has not yet been answered. In [24], it is conjectured

that choosing the next codeword can be constructively done by minimizing the total

deviation θ(C). The conjecture is as follows.

Conjecture 5.24. For the (n+ 1)-th codeword, minimizing the total deviation max-

imizes the entropy of the PUF responses.

We now move forward by examining some bounds for total deviation.

Theorem 5.25. If H is a Hadamard code of length n then by adding an additional

codeword, its total deviation is bounded below by
√
n ≤ θ(H). Furthermore,

√
n =

θ(H) occurs if and only if |⟨x, y⟩| =
√
n for all codewords y ∈ H.

Proof. The codewords of H form an orthogonal basis for Rn. Then any x ∈ {±1}n

can be decomposed. We have

x =
∑︂
y∈H

⟨x, y⟩
∥y∥2

y,

where ∥x∥2 = ∥y∥2 = n. Thus,

n = ∥x∥2 =
∑︂
y∈H

(︃
⟨x, y⟩
n

)︃2

∥y∥2 =
∑︂
y∈H

(⟨x, y⟩)2

n
≤ θ(H)2

where equality occurs if and only if |⟨x, y⟩| =
√
n for all y ∈ H, which can only occur

if n is a perfect square.

We define a special name for a codeword which achieves equality in Theorem 5.25.

Definition 5.26. Let H be a Hadamard code of length n. In the case that the vector

x attains the equality |⟨x, y⟩| =
√
n for all y ∈ H, then x is called a bent sequence

with respect to the Hadamard code H.
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Example 5.27. A column vector x, attached to a Hadamard matrix, H, of order 4:

Hx =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 − 1 −

1 1 − −

1 − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

1

1

−

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
2

2

2

2̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Indexing the rows of H by ri for 1 ≤ i ≤ 4, notice that |⟨ri, x⟩| = 2 for all ri.

Hence, x is a bent sequence with respect to H. As the total deviation is bounded

below by
√
4 = 2, the vector x minimizes total deviation. Additionally, notice that in

this example the resulting vector is a multiple of the vector we started with. Namely

Hx = 2x.

In general, whenever a bent sequence results in a multiple of itself, the sequence is

said to be self-dual bent sequence. We now give a formal definition.

Definition 5.28. Let x be a bent sequence with respect to a Hadamard matrix H of

order n. Then as ⟨x, y⟩ = ±
√
n for any row y of H, then the sequence

y =
Hx√
n
∈ {±1}n.

The sequence y is called the dual sequence of x. In the case that y = x, we say that

x is a self-dual bent sequence.

In the previous example, the vector x is a self-dual bent sequence. Throughout

Section 5.2 which dealt with bent functions, we have already caught glimpses of some

other examples of bent sequences. The following proposition shows the equivalence

of bent functions and bent sequences.

Proposition 5.29. Let f ∈ Bn and F = (−1)f . Then f is a bent function if and

only if ϕ(F )T is a bent sequence attached to Sn.

Proof. Suppose f is a bent function. Then we know |F̂ (x)| = 2n/2 for all x ∈ (Z2)
n.

By Lemma 5.7 we also know ϕ(F̂ )T = Snϕ(F )T . Since Sn is a Hadamard matrix of
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order 2n, and |F̂ (x)| = 2n/2 then |⟨ϕ(F ), y⟩| = 2n/2 for all rows y ∈ Sn. Hence ϕ(F )T

is a bent sequence with respect to Sn.

Conversely, suppose ϕ(F )T is a bent sequence attached to Sn. By definition

|⟨ϕ(F ), y⟩| = 2n/2 for all rows y ∈ Sn. This means |F̂ (x)| = 2n/2 for all x ∈ (Z2)
n,

which proves that f is a bent function.

Proposition 5.30. Let H be a Hadamard matrix of order n. If x is a bent sequence

with respect to H, then its dual sequence is bent with respect to HT , and the dual

sequence of y is x.

Proof. We know HHT = HTH = nIn. Then observe

y =
xHT

√
n

yH =
xHTH√

n

yH = x
√
n

and so x = yH/
√
n ∈ {±1}n as desired.

Theorem 2.16 showed a method of combining two Hadamard matrices into a larger

Hadamard matrix using the Kronecker product. Building off of this result, we prove

that if there exist bent sequences attached to the two Hadamard matrices, then the

Kronecker product of the two bent sequences gives a new, larger bent sequence.

Proposition 5.31. Suppose h and k are bent sequences with respect to the Hadamard

matrices H and K. Then h⊗k is a bent sequence with respect to the Hadamard matrix

H ⊗K.

Proof. Suppose H is a Hadamard matrix of order n and K is a Hadamard matrix of

order m. Then using the fact that
√
n
√
m =

√
nm we have

(h⊗ k)(H ⊗K)T√
nm

=
hHT

√
n

⊗ kKT

√
m

∈ {±1}nm,

completing the proof.
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5.3.1 Computational Results

We now summarize and expand on some computational found in [24].

• For n = 16 there are 5 inequivalent Hadamard matrices. These matrices can be

found in the Hadamard matrix database in Magma.

1. One corresponds to the Sylvester type, where any vector v at a distance of

6 is a bent sequence. This matrix corresponds to the Magma index of 1.

2. Two of the Hadamard matrices do not meet the total deviation condition

required for the existence of bent sequences. These matrices correspond to

a Magma index of 2 and 3.

3. The other two Hadamard matrices met the total deviation lower bound,

meaning that there were bent sequences attached to these matrices. These

matrices correspond to the Magma index of 4 and 5.

• The bent sequences, labelled v, attached to the Hadamard matrices met the

minimum deviation bound with equality, namely θ(C, v) =
√
16 = 4.

• For the two non-equivalent Hadamard matrices with Magma index 4 and 5,

there were a total of 384 and 128 bent sequences, respectively.

• Not reported in [24], the Sylvester type corresponding to a Magma index of

1 has a total of 896 bent sequences. None of the bent sequences found are

self-dual.

In all of these cases, the bent sequences gave maximal entropy. In these cases, the

next codeword which maximized entropy was the one where θ(C, v) was as small as

possible.

73



Chapter 6

Constructions

In this chapter, we will first delve into the notion of unbiased Hadamard matrices. We

will then employ our knowledge of Latin squares from Chapter 4 to construct these

matrices as well as show how bent sequences arise from the outlined constructions.

Most of the results in this chapter are similar to those included in our paper [23].

6.1 Unbiased Hadamard Matrices

The constructions of real unbiased Hadamard matrices showcased in this section were

first published in [8]. We begin by giving a definition.

Definition 6.1. Two Hadamard matrices H and K of order n are said to be unbiased

if

HKT =
√
nL,

where L is a Hadamard matrix of order n.

The definition of an unbiased Hadamard matrix can also be extended to the com-

plex case. Two BH(n; q) matrices H and K are said to be unbiased if

HK∗ =
√
nL,

where L is a BH(n; q).

We now present an essential theorem which we will use to construct both Bush-

type and mutually unbiased Hadamard matrices. The theorem, originating from [11]
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is stated in reference to real Hadamard matrices. We generalize this theorem to the

case of Butson Hadamard matrices, starting with the following definition.

Definition 6.2. Let H be a BH(n; q). Define ri to be the i-th row of H for i ∈

{1, 2, . . . , n}. Then the n auxiliary matrices associated to H are the matrices ci = r∗i ri.

Theorem 6.3. The auxiliary matrices ci associated to a normalized BH(n; q) satisfy

the following properties:

1. c1 = Jn,

2. cicj = δi,j(nci),

3. c∗i = ci, and

4.
∑︁n

i ci = nIn.

Proof. Let H be a normalized BH(n; q). Property 1 follows from the fact that H is

normalized. To verify Property 2, note that

cicj = (r∗i ri)(r
∗
j rj) = r∗i (rir

∗
j )rj.

Since H is a Butson Hadamard matrix, if i ̸= j then (rir
∗
j ) = 0. Otherwise if i = j

then rir
∗
j = n and nr∗i ri = nci as desired.

Property 3 follows from the properties of the conjugate transpose. We have

c∗i = (r∗i ri)
∗ = r∗i (r

∗
i )

∗ = r∗i ri = ci.

Finally, since H∗ is a Hadamard matrix

n∑︂
i

ci =
n∑︂
i

r∗i ri = nIn,

as these are the entries on the diagonal of H∗H = nIn, proving Property 4.

We are now able to present a general construction, allowing us to create the Bush-

type Hadamard matrix presented in Example 2.24.
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Theorem 6.4. Suppose c1, c2, . . . , cn are the auxiliary matrices associated with a nor-

malized BH(n; q). Then there exists a regular BH(n2; q).

Proof. Let L be a Latin square of size n on the symbols X = {1, 2, . . . , n}. Replace

the symbol i in L with ci to form a matrix H. First, we show that H is a BH(n2; q).

Since L is a Latin square, no columns contain repeated elements. Thus the block

rows of H are orthogonal by Part 2 of Theorem 6.3. To see that the rows within a

given block row of H are orthogonal we refer to Part 4 of Theorem 6.3. Consider two

rows within a block row of H, say a and b. Let ri,j denote the j-th entry in the row

i of the BH(n; q). The inner product of these rows simplifies is simplified using the

fact that distinct rows and columns of the BH(n; q) are orthogonal, giving us

a · b =
n∑︂

i=1

n∑︂
j=1

(r∗i,ari,j)(r
∗
i,bri,j) =

n∑︂
i=1

r∗i,ar
∗
i,b

n∑︂
j=1

ri,jri,j = n
n∑︂

i=1

r∗i,ar
∗
i,b = 0.

Thus, the rows within a given block of H are also orthogonal, so H is a BH(n2; q).

Finally, by Part 4 of Theorem 6.3 it easily follows that H is a regular BH(n2; q) as

desired.

Remark 6.5. In Theorem 6.4, if a Latin square is chosen such that it has an all-ones

diagonal, then the resulting BH(n2; q) will be a Bush-type Hadamard matrix. Since

Latin squares retain orthogonality with permutation, given a BH(n; q) it will always be

possible to form a Bush-type BH(n2; q) by permitting L to have an all-ones diagonal.

Theorem 6.6. Let c1, c2, . . . , cn be the auxiliary matrices associated with a normalized

Butson Hadamard matrix BH(n; q) and suppose there exists k MSLS(n). Then there

exists a set of k mutually unbiased BH(n2; q).

Proof. Suppose each Latin square Li in the set of MSLS(n) is written over the sym-

bol set X = {1, 2, . . . , n}. For each Latin square Li for i ∈ {1, 2, . . . , k}, create

the BH(n2; q) following Theorem 6.4 and label the resulting matrices H1, H2, . . . , Hk.

Then choose two arbitrary matrices from this collection, say Hi and Hj for i, j ∈
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{1, 2, . . . , k}, i ̸= j. Let Hi and Hj come from the Latin squares Li and Lj, respec-

tively. Since Li and Lj are suitable, any row of Li will agree in precisely one position

with any row of Lj. Thus, performing the matrix multiplication HiH
∗
j , any block

row of Hi will have exactly one common auxiliary matrix in the same position as any

block column of H∗
j . By Part 3 of Theorem 6.3 the conjugate transpose does not

change the auxiliary matrices. Label K = HiH
∗
j . Then, by Part 2 of Theorem 6.3,

for the fixed auxiliary matrix, say cm, between any block row of Hi and any block

column of H∗
j we have cmc

∗
m = cmcm = ncm. For the remaining auxiliary matrices

which are not fixed, the resulting matrix multiplications will be zero by Part 2 of

Theorem 6.3. So far we have shown that any block row of Hi multiplied by a block

column of Hj will look like ncm for some auxiliary matrix cm. Thus, K is a matrix

made up of n2 blocks of size n× n, with absolute value n.

To see that K is a multiple of a BH(n2; q), let L = K/n. Consider a block row of

L, say rb. If rb contains two copies of an auxiliary matrix, say cm, this means that a

given row of Li contains a common entry m in the same position as two rows of Lj.

However, this is a contradiction as Lj is a Latin square. Thus, rb contains only one

copy of each auxiliary matrix, and by Part 4 of Theorem 6.3, any two rows within rb

are orthogonal.

Now consider two block rows of L, say ra and rb. If ra and rb both contain a

common auxiliary matrix, say cm in any column, this implies that two rows of Li

have a common entry m in the same position as a row of Lj. However, this cannot

occur as Lj is a Latin square. Thus by Part 2 of Theorem 6.3 the two block rows ra

and rb are orthogonal. Therefore, L is a BH(n2; q) as desired.

Refer to Example A.1 found in Appendix A for an application of the previous

theorem.
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6.2 Bent Sequences and Unbiased Hadamard Ma-

trices

There is a direct connection between unbiased Hadamard matrices and bent sequences

as defined in Definition 5.26. In fact, given two real unbiased Hadamard matrices of

order n, say H and K, by definition, we know HKT =
√
nL. This shows that each

row of K is a bent sequence attached to H. We summarize this discussion in the

following theorem.

Theorem 6.7. Let Hn be a normalized Hadamard matrix of order n > 2. Then there

exists a Hadamard matrix of order n2 with at least n2 attached bent sequences.

Proof. As n ≡ 0 (mod 4), using Theorem 4.11 we know there exists a pair of orthog-

onal Latin squares of order n. Applying Theorem 6.6 we can construct two unbiased

regular Hadamard matrices of order n2. Call these matrices H and K. Then by

definition, HKT =
√
nL for some Hadamard matrix L. As L is Hadamard each row

of K is a bent sequence attached to H. Therefore, H is a Hadamard matrix with n2

attached bent sequences.

Using Theorem 6.7, we can construct a Bush-type Hadamard matrix H of order

16n2 along with 16n2 unique bent sequences attached to H for any n, provided the

existence of Hadamard matrix of order 4n. However, the utility of Theorem 6.6 can

be further extended. First, we generalize bent sequences to contain complex entries.

Definition 6.8. Let H be a BH(n; q). Then x is a bent sequence attached to H if

Hx =
√
n · y,

where the entries of y are in ⟨ξq⟩. If x = y then the sequence is said to be self-dual.

We now state a generalization of Theorem 6.7. We use Theorems 4.11 and 4.6,

along with the fact that there exist orthogonal Latin squares of order n ≡ 2 (mod 4),

n > 6. For the general construction of Latin squares of order n ≡ 2 (mod 4), we refer
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to the results of Raj Chandra Bose and Sharadchandra Shankar Shrikhande found in

[2].

Lemma 6.9. Let Hn be a normalized normalized BH(n; q), n > 2, n ̸= 6. Then there

exists a BH(n2; q) with at least n2 attached bent sequences.

Proof. By the discussion above we know there exists orthogonal Latin squares of order

n. Applying Theorem 6.6 we construct two unbiased BH(n2; q), say H and K. Then

as HK∗ =
√
nL where the entries of L are in ⟨ξq⟩, the complex conjugate of the rows

of K provides the n2 bent sequences.

Remark 6.10. Theorem 6.7 and Lemma 6.9 show that there exist at least n2 bent

sequences. In the worst-case scenario for these results, there are a minimum of 2

MSLS(n). However, in many cases, there are much more than 2 MSLS(n). In the

case that we have k MSLS(n) it is possible to obtain (k− 1)n2 bent sequences. These

bent sequences are unique, as the resulting k matrices are mutually unbiased, meaning

that no rows can be identical.

Refer to Example A.2 found in Appendix A for a demonstration of Lemma 6.9.

As stated in the appendix, the normalized BH(4; 4) comes from Proposition 3.29. By

applying this proposition, it is possible to construct an example of a BH(n2;n) having

at least n2 attached bent sequences for any n > 2, n ̸= 6. We now shift our discussion

to that of self-dual bent sequences.

6.3 Self-dual Bent Sequences

In the previous section, we used suitable Latin squares to create unbiased Butson

Hadamard matrices resulting in many bent sequences. In this section, we showcase a

method of using a single Latin square to construct self-dual bent sequences attached

to Butson Hadamard matrices. We begin with an example.
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Example 6.11. Let

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 i − j

1 − 1 −

1 j − i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let c1, c2, c3 and c4 be the auxiliary matrices corresponding to H. Construct the

BH(16; 4), labelled K, using Theorem 6.4. Note that K is the second matrix in Ex-

ample A.2. Then let

x =

[︃
c1 c3 c4 c2

]︃
.

Importantly, notice the auxiliary matrices making up x are the same auxiliary matrices

appearing on the diagonal of K, in the same order. Multiplying K by x∗ we see

Kx∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 i − j 1 − 1 − 1 j − i
1 1 1 1 j 1 i −− 1 − 1 i 1 j −
1 1 1 1 − j 1 i 1 − 1 −− i 1 j
1 1 1 1 i − j 1 − 1 − 1 j − i 1
1 j − i 1 − 1 − 1 i − j 1 1 1 1
i 1 j −− 1 − 1 j 1 i − 1 1 1 1
− i 1 j 1 − 1 −− j 1 i 1 1 1 1
j − i 1 − 1 − 1 i − j 1 1 1 1 1
1 i − j 1 1 1 1 1 j − i 1 − 1 −
j 1 i − 1 1 1 1 i 1 j −− 1 − 1
− j 1 i 1 1 1 1 − i 1 j 1 − 1 −
i − j 1 1 1 1 1 j − i 1 − 1 − 1
1 − 1 − 1 j − i 1 1 1 1 1 i − j
− 1 − 1 i 1 j − 1 1 1 1 j 1 i −
1 − 1 −− i 1 j 1 1 1 1 − j 1 i
− 1 − 1 j − i 1 1 1 1 1 i − j 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 − 1 −
− 1 − 1
1 − 1 −
− 1 − 1
1 j − i
i 1 j −
− i 1 j
j − i 1
1 i − j
j 1 i −
− j 1 i
i − j 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 − 1 −
− 1 − 1
1 − 1 −
− 1 − 1
1 j − i
i 1 j −
− i 1 j
j − i 1
1 i − j
j 1 i −
− j 1 i
i − j 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that Kx∗ = 4x∗. Therefore, the columns of x∗ give us four self-dual bent se-

quences attached to K.

Remark 6.12. We now give some important context relating to Example 6.11. First,

any Latin square L without a constant diagonal works. We used L2 from Example
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4.13, but L3 would also work. Notably, all Latin squares constructed without k = 0

in Theorem 4.16 will work for the construction given the correct choice of x. In the

example, it was noted that x was chosen such that the auxiliary matrices making up

x are the same auxiliary matrices appearing on the diagonal of K, in the same order.

Therefore, if we chose another Latin square, such as L3 from Example 4.13 we would

have

x =

[︃
1 4 2 3

]︃
,

and replace the each symbol i with the corresponding auxiliary matrix ci. By Theorem

6.3, this particular choice of x ensures that only the diagonal blocks of the matrix

constructed from Theorem 6.4 will remain once we multiply on the right by x∗.

The above discussion establishes the following.

Theorem 6.13. Let H be a BH(n; q) with corresponding auxiliary matrices c1, c2, . . . , cn

and let L be a Latin square of order n over the symbols X = {1, 2, . . . , n} with a non-

constant diagonal. Let K be the matrix constructed from Theorem 6.4 using H and

L. Suppose the diagonal of L is given by

x =

[︃
x1 x2 · · · xn

]︃
.

Then replacing xi with cxi
, the columns of x∗ provide n self-dual bent sequences at-

tached to K.

6.4 Bent Sequences With Zero Entries

In this section, we allow bent sequences to contain zero entries. Previously, our

definition of bent sequences relied on Butson Hadamard matrices. However, in this

section, we generalize bent sequences to be attached to a natural generalization of

Butson Hadamard matrices, namely, complex weighing matrices.

We begin by broadening the definition of bent sequences to include zero entries.
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Let W be a CW(n, k; q). Then x is a bent sequence attached to W if

Wx =
√
ky,

where the entries of y are in ⟨ξq⟩ ∪ {0}. As before, if x = y then x is said to be

self-dual.

First and foremost, we showcase a method of constructing complex weighing ma-

trices analogous to our previous method of constructing Butson Hadmard matrices.

SupposeH is a BH(n; q). Then, it is straightforward to verify that adding any number

of n×n zero matrices to the set of auxiliary matrices coming from H does not violate

any of the four conditions of Theorem 6.3. This allows us to generalize Theorem 6.4

to create complex weighing matrices.

Theorem 6.14. Let c1, c2, . . . , cn be the auxiliary matrices associated with a normal-

ized BH(n; q) and let m be any non-negative integer. Then there exists a CW(n(n +

m), n2; q).

Proof. Let L be a Latin square of size n + m on the integers X = {1, 2, . . . , n, n +

1, . . . , n+m}. Then, replace the integers i ≤ n in L with ci and i > n with 0n. Call

this new matrix W . From the fact that L is a Latin square, it easily follows that W

is an n(n+m)× n(n+m) matrix with n2 nonzero entries in every row and column.

To show that W is a CW(n(n+m), n2; q) recall that in the proof of Theorem 6.4,

we showed that distinct block rows and rows within block rows are orthogonal by

applying properties of Theorem 6.3, which still holds when adding any number of

zero matrices.

To see that two rows within a block row are orthogonal define each zero matrix

in the same way as we defined the auxiliary matrices. Namely, note that 0n = r∗0r0

where r0 is a row of all zeroes of length n. Then, apply the same process as in the

proof of Theorem 6.4 to show that the rows are orthogonal.

We are now able to generalize Theorem 6.13 to obtain a method constructing
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self-dual bent sequences attached to the complex weighing matrices constructed in

Theorem 6.14.

Theorem 6.15. Let H be a BH(n; q) with corresponding auxiliary matrices c1, c2, . . . , cn

and let m be a non-negative integer. Then let cn+1 = · · · = cn+m = 0n. If L is a Latin

square of order n+m over the symbols X = {1, 2, . . . , n+m} with all symbols of X

appearing on the diagonal. If the diagonal of L is given by

x =

[︃
x1 x2 · · · xn+m

]︃
,

then replacing the entry xi with cxi
, the columns of x∗ provide n self-dual bent se-

quences attached the CW(n(n+m), n2; q) constructed using Theorem 6.14.

Proof. Let K denote the CW(n(n + m), n2; q) from Theorem 6.14. From our pre-

vious discussion, we know that the larger set of auxiliary matrices, now containing

m additional zero matrices satisfies all the properties of Theorem 6.3. As a direct

consequence of Part 2 of Theorem 6.3, this particular choice of x ensures that only

the diagonal blocks of K will remain in the product of Kx∗. Furthermore, as every

symbol in X appears on the diagonal of L, x will have precisely m blocks of zeroes,

and n blocks of the auxiliary matrices coming from H.

Refer to Example B.1 found in Appendix B for an example application of Theorem

6.15.

Furthermore, we can generalize Theorem 6.6 to obtain even more bent sequences

attached to the complex weighing matrices from Theorem 6.14. First, we extend the

definition of unbiased matrices to include weighing matrices. As in the case of Butson

Hadamard matrices, two CW(n, k; q), say W and K are said to be unbiased if

WK∗ =
√
kL,

where L is a CW(n, k; q).
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Theorem 6.16. Let c1, c2, . . . , cn be the auxiliary matrices associated with a normal-

ized Butson Hadamard matrix BH(n; q) and define cn+1 = · · · = cn+m = 0n where m

is some non-negative integer. Suppose there exists k MSLS(n+m). Then there exists

a set of k mutually unbiased CW(n(n+m), n2; q).

Proof. Suppose each Latin square Li in the set of MSLS(n + m) is written over

the symbol set X = {1, 2, . . . , n+m}. For each Latin square Li for i ∈ {1, 2, . . . , k},

create the CW(n(n+m), n2; q) following Theorem 6.6 and label the resulting matrices

W1,W2, . . . ,Wk.

We must show that WiW
∗
j = nW where W is a CW(n(n +m), n2; q). The proof

that the rows of W are orthogonal is essentially a restatement of the proof of Theorem

6.6, where we use the fact that the extended set of auxiliary matrices satisfies all four

properties of Theorem 6.3 to show that the rows of W are orthogonal.

To complete the proof we must still show that W has a weight of n2. Let Li and

Lj be the Latin squares from which Wi and Wj were constructed. As a given row of

Li agrees in precisely one position as any row of Lj, each ci for i ∈ {1, 2, . . . , n+m}

must appear precisely once as each row of Lj is a permutation of X. There are n

auxiliary matrices which are non-zero, and so it follows that W has a weight of n2

completing the proof.

Example B.2 found in Appendix B uses an application of Theorem 6.16 to construct

three CW(12, 9; 3). Each of the matrices has 24 attached bent sequences, coming from

the conjugate transpose of rows from the other two complex weighing matrices.

Remark 6.17. Given n > 2 and n ̸= 6, there will be at least 2 MSLS(n+m). Then

any given matrix from the set of mutually unbiased complex weighing matrices con-

structed in Theorem 6.16 has many attached bent sequences coming from the conjugate

transposes of the rows of the other matrices in the set.

Remark 6.18. The matrices from Theorems 6.4 and 6.14 are not always symmetric.
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However, in Examples A.1 and B.2, all three Latin squares used were symmetric,

ensuring the resulting matrices were also symmetric.
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Appendix A: Bent Sequences
without Zero

Example A.1. The following is a set of 3 MSLS(4) previously shown in Example

4.19:

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 4 2 3

4 1 3 2

2 3 1 4

3 2 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 3 4 2

3 1 2 4

4 2 1 3

2 4 3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the following normalized Hadamard matrix of order 4

H4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 1 − −

1 − 1 −

1 − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

we obtain the four corresponding auxiliary matrices⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 − −

1 1 − −

− − 1 1

− − 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 − 1 −

− 1 − 1

1 − 1 −

− 1 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 − − 1

− 1 1 −

− 1 1 −

1 − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Using the three MSLS(4) the auxiliary matrices shown above we obtain the following

three mutually unbiased Bush-type Hadamard matrices of order 16 using Theorem 6.6.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 −− 1 − 1 − 1 −− 1
1 1 1 1 1 1 −−− 1 − 1 − 1 1 −
1 1 1 1 −− 1 1 1 − 1 −− 1 1 −
1 1 1 1 −− 1 1 − 1 − 1 1 −− 1
1 1 −− 1 1 1 1 1 −− 1 1 − 1 −
1 1 −− 1 1 1 1 − 1 1 −− 1 − 1
−− 1 1 1 1 1 1 − 1 1 − 1 − 1 −
−− 1 1 1 1 1 1 1 −− 1 − 1 − 1
1 − 1 − 1 −− 1 1 1 1 1 1 1 −−
− 1 − 1 − 1 1 − 1 1 1 1 1 1 −−
1 − 1 −− 1 1 − 1 1 1 1 −− 1 1
− 1 − 1 1 −− 1 1 1 1 1 −− 1 1
1 −− 1 1 − 1 − 1 1 −− 1 1 1 1
− 1 1 −− 1 − 1 1 1 −− 1 1 1 1
− 1 1 − 1 − 1 −−− 1 1 1 1 1 1
1 −− 1 − 1 − 1 −− 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 −− 1 1 1 −− 1 − 1 −
1 1 1 1 − 1 1 − 1 1 −−− 1 − 1
1 1 1 1 − 1 1 −−− 1 1 1 − 1 −
1 1 1 1 1 −− 1 −− 1 1 − 1 − 1
1 −− 1 1 1 1 1 1 − 1 − 1 1 −−
− 1 1 − 1 1 1 1 − 1 − 1 1 1 −−
− 1 1 − 1 1 1 1 1 − 1 −−− 1 1
1 −− 1 1 1 1 1 − 1 − 1 −− 1 1
1 1 −− 1 − 1 − 1 1 1 1 1 −− 1
1 1 −−− 1 − 1 1 1 1 1 − 1 1 −
−− 1 1 1 − 1 − 1 1 1 1 − 1 1 −
−− 1 1 − 1 − 1 1 1 1 1 1 −− 1
1 − 1 − 1 1 −− 1 −− 1 1 1 1 1
− 1 − 1 1 1 −−− 1 1 − 1 1 1 1
1 − 1 −−− 1 1 − 1 1 − 1 1 1 1
− 1 − 1 −− 1 1 1 −− 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 − 1 − 1 −− 1 1 1 −−
1 1 1 1 − 1 − 1 − 1 1 − 1 1 −−
1 1 1 1 1 − 1 −− 1 1 −−− 1 1
1 1 1 1 − 1 − 1 1 −− 1 −− 1 1
1 − 1 − 1 1 1 1 1 1 −− 1 −− 1
− 1 − 1 1 1 1 1 1 1 −−− 1 1 −
1 − 1 − 1 1 1 1 −− 1 1 − 1 1 −
− 1 − 1 1 1 1 1 −− 1 1 1 −− 1
1 −− 1 1 1 −− 1 1 1 1 1 − 1 −
− 1 1 − 1 1 −− 1 1 1 1 − 1 − 1
− 1 1 −−− 1 1 1 1 1 1 1 − 1 −
1 −− 1 −− 1 1 1 1 1 1 − 1 − 1
1 1 −− 1 −− 1 1 − 1 − 1 1 1 1
1 1 −−− 1 1 −− 1 − 1 1 1 1 1
−− 1 1 − 1 1 − 1 − 1 − 1 1 1 1
−− 1 1 1 −− 1 − 1 − 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example A.2. Using the same three Latin squares shown in Example A.1, we can

form three mutually unbiased symmetric Bush-type BH(16; 4) from the following nor-

malized BH(4; 4) ⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 i − j

1 − 1 −

1 j − i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Denoting −i = j, the following are the four auxiliary matrices of the BH(4; 4)⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 i − j

j 1 i −

− j 1 i

i − j 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 − 1 −

− 1 − 1

1 − 1 −

− 1 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 j − i

i 1 j −

− i 1 j

j − i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Note that the normalized BH(4; 4) comes from Proposition 3.29. The three matrices

obtained using Theorem 6.6 are shown below.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 i − j 1 − 1 − 1 j − i
1 1 1 1 i − j 1 − 1 − 1 j − i 1
1 1 1 1 − j 1 i 1 − 1 −− i 1 j
1 1 1 1 j 1 i −− 1 − 1 i 1 j −
1 i − j 1 1 1 1 1 j − i 1 − 1 −
i − j 1 1 1 1 1 j − i 1 − 1 − 1
− j 1 i 1 1 1 1 − i 1 j 1 − 1 −
j 1 i − 1 1 1 1 i 1 j −− 1 − 1
1 − 1 − 1 j − i 1 1 1 1 1 i − j
− 1 − 1 j − i 1 1 1 1 1 i − j 1
1 − 1 −− i 1 j 1 1 1 1 − j 1 i
− 1 − 1 i 1 j − 1 1 1 1 j 1 i −
1 j − i 1 − 1 − 1 i − j 1 1 1 1
j − i 1 − 1 − 1 i − j 1 1 1 1 1
− i 1 j 1 − 1 −− j 1 i 1 1 1 1
i 1 j −− 1 − 1 j 1 i − 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 j − i 1 i − j 1 − 1 −
1 1 1 1 j − i 1 i − j 1 − 1 − 1
1 1 1 1 − i 1 j − j 1 i 1 − 1 −
1 1 1 1 i 1 j − j 1 i −− 1 − 1
1 j − i 1 1 1 1 1 − 1 − 1 i − j
j − i 1 1 1 1 1 − 1 − 1 i − j 1
− i 1 j 1 1 1 1 1 − 1 −− j 1 i
i 1 j − 1 1 1 1 − 1 − 1 j 1 i −
1 i − j 1 − 1 − 1 1 1 1 1 j − i
i − j 1 − 1 − 1 1 1 1 1 j − i 1
− j 1 i 1 − 1 − 1 1 1 1 − i 1 j
j 1 i −− 1 − 1 1 1 1 1 i 1 j −
1 − 1 − 1 i − j 1 j − i 1 1 1 1
− 1 − 1 i − j 1 j − i 1 1 1 1 1
1 − 1 −− j 1 i − i 1 j 1 1 1 1
− 1 − 1 j 1 i − i 1 j − 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 − 1 − 1 j − i 1 i − j
1 1 1 1 − 1 − 1 j − i 1 i − j 1
1 1 1 1 1 − 1 −− i 1 j − j 1 i
1 1 1 1 − 1 − 1 i 1 j − j 1 i −
1 − 1 − 1 1 1 1 1 i − j 1 j − i
− 1 − 1 1 1 1 1 i − j 1 j − i 1
1 − 1 − 1 1 1 1 − j 1 i − i 1 j
− 1 − 1 1 1 1 1 j 1 i − i 1 j −
1 j − i 1 i − j 1 1 1 1 1 − 1 −
j − i 1 i − j 1 1 1 1 1 − 1 − 1
− i 1 j − j 1 i 1 1 1 1 1 − 1 −
i 1 j − j 1 i − 1 1 1 1 − 1 − 1
1 i − j 1 j − i 1 − 1 − 1 1 1 1
i − j 1 j − i 1 − 1 − 1 1 1 1 1
− j 1 i − i 1 j 1 − 1 − 1 1 1 1
j 1 i − i 1 j −− 1 − 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this example, each complex Hadamard matrix has 32 attached bent sequences.

These sequences come from the complex conjugates of the rows of the other two ma-

trices.
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Appendix B: Bent Sequences with
Zero

Example B.1. First, define

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let ξ be a primitive third root of unity and let

H =

⎛⎜⎜⎜⎜⎝
1 1 1

1 ξ ξ2

1 ξ2 ξ

⎞⎟⎟⎟⎟⎠
be the BH(3; 3) constructed using Proposition 3.29. Then

c1 =

⎛⎜⎜⎜⎜⎝
1 1 1

1 1 1

1 1 1

⎞⎟⎟⎟⎟⎠ , c2 =

⎛⎜⎜⎜⎜⎝
1 ξ ξ2

ξ2 1 ξ

ξ ξ2 1

⎞⎟⎟⎟⎟⎠ , c3 =

⎛⎜⎜⎜⎜⎝
1 ξ2 ξ

ξ 1 ξ2

ξ2 ξ 1

⎞⎟⎟⎟⎟⎠
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are the auxiliary matrices corresponding to H. Define c4 = 03 to be the 3×3 all zeroes

matrix. The CW(12, 9; 3) constructed from Theorem 6.14 is given as

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 ξ ξ2 1 ξ2 ξ 0 0 0
1 1 1 ξ2 1 ξ ξ 1 ξ2 0 0 0
1 1 1 ξ ξ2 1 ξ2 ξ 1 0 0 0
0 0 0 1 ξ2 ξ 1 ξ ξ2 1 1 1
0 0 0 ξ 1 ξ2 ξ2 1 ξ 1 1 1
0 0 0 ξ2 ξ 1 ξ ξ2 1 1 1 1
1 ξ ξ2 1 1 1 0 0 0 1 ξ2 ξ
ξ2 1 ξ 1 1 1 0 0 0 ξ 1 ξ2

ξ ξ2 1 1 1 1 0 0 0 ξ2 ξ 1
1 ξ2 ξ 0 0 0 1 1 1 1 ξ ξ2

ξ 1 ξ2 0 0 0 1 1 1 ξ2 1 ξ
ξ2 ξ 1 0 0 0 1 1 1 ξ ξ2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then using the diagonal blocks of K we define

x =

[︃
c1 c3 c4 c2

]︃
.

Multiplying K by x∗ we see

Kx∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 ξ ξ2 1 ξ2 ξ 0 0 0
1 1 1 ξ2 1 ξ ξ 1 ξ2 0 0 0
1 1 1 ξ ξ2 1 ξ2 ξ 1 0 0 0
0 0 0 1 ξ2 ξ 1 ξ ξ2 1 1 1
0 0 0 ξ 1 ξ2 ξ2 1 ξ 1 1 1
0 0 0 ξ2 ξ 1 ξ ξ2 1 1 1 1
1 ξ ξ2 1 1 1 0 0 0 1 ξ2 ξ
ξ2 1 ξ 1 1 1 0 0 0 ξ 1 ξ2

ξ ξ2 1 1 1 1 0 0 0 ξ2 ξ 1
1 ξ2 ξ 0 0 0 1 1 1 1 ξ ξ2

ξ 1 ξ2 0 0 0 1 1 1 ξ2 1 ξ
ξ2 ξ 1 0 0 0 1 1 1 ξ ξ2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 ξ2 ξ
ξ 1 ξ2

ξ2 ξ 1
0 0 0
0 0 0
0 0 0
1 ξ ξ2

ξ2 1 ξ
ξ ξ2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 ξ2 ξ
ξ 1 ξ2

ξ2 ξ 1
0 0 0
0 0 0
0 0 0
1 ξ ξ2

ξ2 1 ξ
ξ ξ2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 3x∗.

Therefore, the columns of x∗ give us three self-dual bent sequences attached to K.

Example B.2. Using the same BH(3, 3) from Example B.1 we form the same four

auxiliary matrices c1, c2, c3 and c4 = 03 as shown previously. Using the set of four

MSLS(4) from Examples 4.19 and A.1 we apply Theorem 6.16 to construct the fol-
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lowing three mutually unbiased CW(12, 9; 3).⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 ξ ξ2 1 ξ2 ξ 0 0 0
1 1 1 ξ2 1 ξ ξ 1 ξ2 0 0 0
1 1 1 ξ ξ2 1 ξ2 ξ 1 0 0 0
1 ξ ξ2 1 1 1 0 0 0 1 ξ2 ξ
ξ2 1 ξ 1 1 1 0 0 0 ξ 1 ξ2

ξ ξ2 1 1 1 1 0 0 0 ξ2 ξ 1
1 ξ2 ξ 0 0 0 1 1 1 1 ξ ξ2

ξ 1 ξ2 0 0 0 1 1 1 ξ2 1 ξ
ξ2 ξ 1 0 0 0 1 1 1 ξ ξ2 1
0 0 0 1 ξ2 ξ 1 ξ ξ2 1 1 1
0 0 0 ξ 1 ξ2 ξ2 1 ξ 1 1 1
0 0 0 ξ2 ξ 1 ξ ξ2 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 1 ξ ξ2 1 ξ2 ξ
1 1 1 0 0 0 ξ2 1 ξ ξ 1 ξ2

1 1 1 0 0 0 ξ ξ2 1 ξ2 ξ 1
0 0 0 1 1 1 1 ξ2 ξ 1 ξ ξ2

0 0 0 1 1 1 ξ 1 ξ2 ξ2 1 ξ
0 0 0 1 1 1 ξ2 ξ 1 ξ ξ2 1
1 ξ ξ2 1 ξ2 ξ 1 1 1 0 0 0
ξ2 1 ξ ξ 1 ξ2 1 1 1 0 0 0
ξ ξ2 1 ξ2 ξ 1 1 1 1 0 0 0
1 ξ2 ξ 1 ξ ξ2 0 0 0 1 1 1
ξ 1 ξ2 ξ2 1 ξ 0 0 0 1 1 1
ξ2 ξ 1 ξ ξ2 1 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 ξ2 ξ 0 0 0 1 ξ ξ2

1 1 1 ξ 1 ξ2 0 0 0 ξ2 1 ξ
1 1 1 ξ2 ξ 1 0 0 0 ξ ξ2 1
1 ξ2 ξ 1 1 1 1 ξ ξ2 0 0 0
ξ 1 ξ2 1 1 1 ξ2 1 ξ 0 0 0
ξ2 ξ 1 1 1 1 ξ ξ2 1 0 0 0
0 0 0 1 ξ ξ2 1 1 1 1 ξ2 ξ
0 0 0 ξ2 1 ξ 1 1 1 ξ 1 ξ2

0 0 0 ξ ξ2 1 1 1 1 ξ2 ξ 1
1 ξ ξ2 0 0 0 1 ξ2 ξ 1 1 1
ξ2 1 ξ 0 0 0 ξ 1 ξ2 1 1 1
ξ ξ2 1 0 0 0 ξ2 ξ 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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