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The V-I characteristics of a
3
He-cooled, composite bolometer detector designed for

submillimetre astronomy are modelled. The modelling yields detector parameters that

cannot be measured directly. The system NEP predicted from theoretical V-I equations is

found to agree with the measured noise values. The calculated dynamic thermal

conductance and the electrical responsivity are found to deviate from the standard model

at low temperatures.
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1. Introduction

Measurements of the bolometer voltage as a function of bias current and radiant

power loading provide a simple method of determining the performance of a bolometer

[1,2,3]. By fitting theoretical curves to the V-I data, one can obtain values for parameters

that would otherwise be difficult to measure, such as the thermal conductance, radiant

loading, and detector temperature. From analysis of the V-I curves and the detector

frequency response, the NEP of the bolometer can be calculated as a function of bias

current, which in turn provides a means of optimising the bias current for a given loading

condition.

2. Bolometer Theory

A schematic of the heat flow through a bolometer is shown in Figure 1a. Radiation

incident on the bolometer, from all sources, is represented by a radiant power loading, Q,

while electrical power dissipated in the bolometer is represented by P. In thermal

equilibrium the power flowing into the bolometer is equal to the power flowing out

through the thermal link, W, given by:
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W P Q= + (1)



The steady state thermal conductance, G, of a thermal link, depends on the

temperature gradient, composition, and geometry of the link. In thermal equilibrium with

a heat sink of temperature T0, the heat flow through the link, W, is given by:

where T is the bolometer temperature.

The dynamic thermal conductance, Gd, is defined as the rate change of heat flow

caused by a change in temperature:

Under constant radiant loading, the temperature of the bolometer varies only with a

change in the electrical power dissipated as a result of a change in the bias current, and the

dynamic thermal conductance reduces to:

Following other authors [2,4,5], we assume that the steady state thermal conductance

can be expressed as a simple power law:

where G0 is the thermal conductance at the sink temperature, T=T0, and $ is a material

dependent parameter, ~1 for metals and ~3 for dielectrics.

Given any functional form for the thermal conductance, the electro-thermal

behaviour of the bolometer can be modelled completely. The first step is to derive an

expression for the thermal conductance in terms of directly measurable electrical

quantities. An equivalent electrical circuit for a typical bolometer is shown in Figure 1b,
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Figure 1 : Schematics of the equivalent (a) thermal and (b) electrical bolometer circuits.



where the bolometer is represented by a temperature dependent resistance, RBol. A bias

voltage, VBias, applied across a load resistor, RL, in series with the bolometer, creates a

bias current, I. RL is chosen to be much larger than RBol so that the bias current has a

minimal dependence on RBol. The bolometer signal is then measured as the voltage drop

across the bolometer, VBol. The dynamic impedance of the bolometer is defined as:

The resistance of a Ge:Ga bolometer crystal as a function of doping level has been

studied by Haller [6] and can be expressed in the empirical form:

where Tg is a material dependent parameter, and R* depends on both the material and

geometry of the crystal. For the material used in our detectors (Haller NTD #13), R* =

7.56 Ω and Tg = 62.6 K.

Equation (7) can be solved for the bolometer temperature, T, and written in terms of

VBol and I as:

The electrical power dissipated in the bolometer is:

Equations (6), (7) and (9) can be manipulated to express the dynamic thermal

conductance as [7]:

The heat flow through a bolometer is analogous to the flow of electrical current

through an RC circuit. As a result, a thermal time constant for the bolometer can be

defined in terms of its thermal capacitance, C, as:

Zwerdling [8] has shown that the electro-thermal interaction between the heating of

the bolometer from the absorbed radiation, and the resulting change in dissipated electrical

power, acts to increase the apparent thermal conductivity. The resulting effective thermal

conductance, Ge, is given by:
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where the term in the brackets is referred to as the static electro-thermal interaction

function.

As a result of the change in thermal conductance, the measured time constant of the

electrical detector signal differs from the physical time constant when the detector views a

modulated source of radiation. This effective time constant, τe, is given by [8]:

In the special case when Z is zero (and RL >> RBol), the electro-thermal interaction

acts to effectively double the frequency response of the detector.

Using Equations (1) and (3), the electrical power can be rewritten as:

Equations (7), (9), and (15) can now be combined to yield the general parametric

bolometer voltage and bias current equations:

If the thermal conductance can be described by a power law (Equation (5)), then

Equation (15) becomes:

and Equations (16) become:

Equations (18) form the basis for our modelling. By fitting these equations to the

experimental data, the values of G0, T0, and Q can be determined.

3. Measured V-I Characteristics

The data presented here were obtained with a new dual polarizing bolometer detector

system that has been developed for use with a polarizing Fourier transform spectrometer

to conduct broadband, intermediate resolution, astronomical spectroscopic observations

at submillimetre wavelengths [9,10]. The V-I data were collected by recording the

bolometer voltage, VBol, as the bias current was varied by manually adjusting the bias
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voltage, VBias, from 0 to ~4 volts. Data were obtained for the detector system viewing hot

(338 K), ambient (290 K), and liquid nitrogen (73 K) blackbody sources, and a blanked off

filter position corresponding to the least possible radiant loading (4 K).

Although the detector system employs a fully differential electronic design to

eliminate common mode noise (shown schematically in Figure 2), the circuit is equivalent

to that of Figure 1b. The resistance of the bolometer is determined from the bolometer

voltage, VBol, and the load resistance, RL, as:

The bias voltage is then converted to bias current by:

In our design, the measured detector output voltage, V, is related to the bolometer

voltage, VBol, by:

where account is taken of the gain and offset of the amplifiers shown in Figure 2 (the offset

is determined when VBias = 0). The bias current then becomes:

The bolometer voltage can now be plotted as a function of bias current. Figure 3

shows an example of the measured V-I curves for the 850 µm band, one of six available

filter bands in the detector system [9,10]. The uppermost curve represents the lowest

radiant loading in which the detector views a 4 K source. In order, subsequent curves

represent the detector viewing liquid nitrogen, ambient, and hot blackbody sources.
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The V-I curves can be analysed to yield values for the thermal conductance, G0, the

heat sink temperature, T0, and the radiant power loading, Q of the bolometer, parameters

which, in our case, cannot easily be determined by other means.

One method is to assume the simple power law form for the thermal conductance

(Equation (5)), and to fit the theoretical V-I equations (Equations (18)) to the experimental

data by varying G0, T0, and Q. Since the experimental data are irregularly gridded and

contain random jitter in both the voltage and current coordinates, a custom IDL [11]

routine was written to fit the measured data to the theoretical V-I equations. The routine

explores the 3-dimensional parameter space defined by G0, T0, and Q. Theoretical V-I

curves are generated at regular intervals spanning the variable space and compared with

the experimental data to yield a χ2
statistic. Reasonable values are chosen for the initial

range of each parameter and the resulting data cube is then visualized in IDL to verify that

the global minimum χ2
is within the set parameter ranges. The parameter ranges and

calculation intervals are iteratively decreased until an appropriate convergence limit has

been reached. Once the best fit is found, the radiant loading for the liquid nitrogen,

ambient and hot blackbody sources can be determined by fixing the values of G0 and T0,

and repeating the least squares fitting procedure.

Figure 4 shows the measured V-I data (symbols) and the theoretical best fit (line) for

the detector viewing a 4 K source. A summary of the parameters determined by the fitting

procedure is given in Table 1. The uncertainties listed correspond to the step sizes of the

array of parameter values used in the fitting routine, when convergence has been reached.

The simple theoretical model shows excellent agreement with the measured data, and does

not require invoking an electric field effect in the bolometer crystal as was considered by

Holland [12].
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Figure 3. Measured V-I curves. In order from top to bottom, the curves represent the

detector viewing 4 K, 73 K, 290 K and 338 K sources, respectively.



A second method of deriving G0 and T0, is to determine the temperature dependence

of Gd, and the zero load temperature of the bolometers directly from the V-I data.

The measured V-I data can be substituted into Equation (8) to produce the plot of the

bolometer temperature as a function of bias current shown in Figure 6. The bolometer is

seen to reach a minimum temperature of 0.293 K (at zero bias current), which sets an upper

limit on the heat sink temperature. This value is slightly less than that listed in Table 1, but,

in the following analysis, we assume that the heat sink temperature, T0, does not differ

significantly from this value. Both values, however, are consistent with the temperature of

~ 0.3 K measured by the GR100 [13] Ge temperature sensor mounted on the cold stage

which supports the bolometer housing (see [10]).
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Fit Parameter Value Uncertainty

G0 (nW/K) 24.55 0.1

T0 (K) 0.300 0.0003

Q (pW) 89.2 1.5

Table 1.
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Figure 4. Theoretical V-I fit (line) to the measured data (symbols), for a 4 K source.



The temperature dependence of the dynamic thermal conductance can be determined

from the experimental data by taking the numerical derivative of P=I
2
R with respect to T,

and compared to the model thermal conductance given by:

Figure 5 shows the experimental Gd data (symbols) and the nonlinear least-squares best fit

of the model thermal conductance given by Equation (23) (line).

It can be seen that the model thermal conductivity curve fits the experimentally

derived values well except at low temperatures, where the actual thermal conductance

falls away more rapidly. Although the experimental data are noisy, the general shape of

the curve is the same for the four, independently measured, loading conditions, indicating

8

( )G
d

dT
G

T

T
T T G

T

T
d = 





−








 = −



0

0

0 0

0

2
1

β

using β = 1 for a metal link (23)

D
y
n
am

ic
T

h
er

m
al

C
o
n
d
u
ct

an
ce

,
G

(n
W

/K
)

d

0.30 0.35 0.40 0.45
Temperature (K)

0

10

20

30

40

50

60

Figure 5. Temperature dependence of the dynamic thermal conductance, Gd, calculated

from V-I data (symbols) and the theoretical model (line), for a 4 K source.
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Figure 6. Measured bolometer temperature as a function of bias current, for a 4 K

source.



that the change in slope at low bias current is not due to mathematical propagation of the

random jitter in the measured V-I data. (Moreover, an error in the amplifier offset or gain

cannot account for this effect.) Since a thermal conductivity of zero at T=T0 is

nonphysical, this points to a possible deficiency in the model of thermal conductance at

low temperature gradients. We can, however, fit Equation (23) to the experimental Gd

data for temperatures above 0.33 K to obtain a value for G0 of 23.5 nW/ K. While the

values determined by these two methods (Tables 1 and 2) are in general agreement, those

in Table 1 are less robust since they necessarily include the low temperature data which is

shown to deviate from the model.

The heat capacity of the bolometer, C, can now be determined from Equation (11)

using the thermal conductance from Table 2, and the detector physical time constant,τ.

The effective detector time constant was measured to be 3 ms, which, under the operating

bias conditions corresponds to a physical time constant of 6 ms (Equation (14)). The

resulting heat capacity is 141 pJ/K, which is within the range set by manufacturing

tolerances.

4. Responsivity

The responsivity of a detector is defined as the detector voltage produced by a given

radiant power, ℜ = dV

dQ
Bol , and can be determined from the V-I curves (electrical

responsivity), and independently from optical measurements (optical responsivity).

The theoretical electrical responsivity can be evaluated from the derivative of

Equations (18) (using β = 1) as:

For a detector with a single time constant, the zero frequency responsivity, ℜ0, is

attenuated with increasing frequency according to [7]:

The electrical responsivity can also be calculated directly from the measured V-I data

using the derivation of Jones [1]:
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Figure 7 shows the nonlinear least-squares best fit of the theoretical responsivity

(Equation (24)) to the the experimentally derived responsivity (Equation (26)). The fact

that the theoretical curve (solid line) deviates from the experimental data (symbols) again

points to deficiencies in the model at low temperatures (ie. low bias currents). Above 20

nA, however, there is general agreement between the responsivity curves.

The optical responsivity, ℜ = ∆
∆
V

Q
Bol , can be determined directly from the voltage

difference between two V-I curves given the difference in the radiant power loading on the

bolometer, )Q. Figure 8 shows an example of the high quality of the agreement between

the optical (symbols) and electrical (line) responsivities calculated from Equation (26).
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Figure 7. Measured electrical responsivity (symbols) and theoretical model (line), for a

4 K source.
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5. Theoretical Noise Performance

The total detector noise equivalent power (NEP) can be expressed as:

The first term represents the absolute minimum achievable NEP set by the photon

background [7], given by:

where AΩ is the detector optical throughput, a is the absorptivity of the detector, ε is the

the emissivity of the source, f is the transmissivity of the optics, k is Boltzmann’s constant,

h is Planck’s constant, c is the speed of light, ν is the radiation frequency, and T is the

temperature of the source.

The second term represents the noise produced in the bolometer as a result of random

fluctuations in heat flow between the bolometer and the heat sink. This phonon NEP can

be expressed as a Taylor series, using the notation )=1-T0/T [7], as:

The third term represents the Johnson noise of the bolometer, taking into account the

electro-thermal feedback from the bias network [7]:

The fourth term represents the Johnson noise associated with the load resistors [7],

neglecting the noise contribution from the bias voltage supply (which is ~ 0.2 nV Hz at

50 Hz), this becomes:

The fifth term represents noise associated with the differential amplifier which can

also be expressed in the terms of a NEP. The JFETs (IFN146 [14]), in Figure 2, are the

primary source of amplifier noise. There are two components of the JFET noise current: a

thermal component of 0.08 fA Hz, and a shot component of 0.4 fA Hz. In addition,

there are two components of the JFET noise voltage: Flicker noise (thought to be due to

surface defects in the device), and Johnson noise produced in the channel resistance. The

total JFET noise voltage, enJFET, is ~ 0.6 nV Hz at 50 Hz [10]. Following the notation of
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Mather [7], when the electro-thermal interaction of the bias network is included, the total

preamp NEP contribution becomes:

The final term represents all forms of excess noise which are not easily modelled.

When using the detector for astronomical observations, the most common forms of excess

noise are: Microphonics, electromagnetic interference, varying atmospheric transmission

and cosmic rays. While the differential electronic design virtually eliminates microphonic

and electrical noise the latter two sources are unavoidable.

The noise components of Equation (27) have been computed from the V-I data.

Figure 9 shows plots of the total detector NEP for a signal frequency of 50 Hz. Excess

noise is not included in the model.

The theoretical minimum NEP for a bolometer can be expressed as [4]:

where, a and b are dependent on the bolometer material and temperature. For our detector,

a = 2.52 and b = 3.31. Using the values for G0, T0, and Q determined by the V-I fitting

procedure (Table 1), the theoretical minimum NEP is 4.5⋅10
-16

W Hz, which is

consistent with the theoretical NEP value calculated from the V-I data (Figure 9) and from

directly measured noise values [10].
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for a 73 K source.
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6. Conclusion

Measurements of the V-I characteristics of a
3
He-cooled, composite bolometer

detector have been used as inputs to a theoretical bolometer model to yield values for the

thermal conductance, G0, heat sink temperature, T0, radiant power loading, Q, electrical

and optical responsivity, ℜ, and NEP. The model, which uses a simple power law form for

the thermal conductance, provides a good fit to the measured V-I data. The simple and

robust fitting algorithm yields detector parameter values consistent with the design. While

the thermal conductance and responsivity derived from the measured data depart from the

model predictions at low temperatures (bias currents), indicating that deficiencies still

exist in the simple model, the model provides reliable NEP values and can be used to

determine the optimum bias current settings for a given radiant loading.
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